These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Photochemical Protection of Reactive Sites on Defective TiO2- x Surface for Electrochemical Water Treatment. Liu C, Zhang AY, Si Y, Pei DN, Yu HQ. Environ Sci Technol; 2019 Jul 02; 53(13):7641-7652. PubMed ID: 31150211 [Abstract] [Full Text] [Related]
4. Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy {001} facets. Zhang AY, Long LL, Liu C, Li WW, Yu HQ. Water Res; 2014 Dec 01; 66():273-282. PubMed ID: 25222331 [Abstract] [Full Text] [Related]
5. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO2 single crystals. Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Water Res; 2019 Jun 15; 157():30-39. PubMed ID: 30952006 [Abstract] [Full Text] [Related]
6. Efficient Electrochemical Reduction of Nitrobenzene by Defect-Engineered TiO2-x Single Crystals. Liu C, Zhang AY, Pei DN, Yu HQ. Environ Sci Technol; 2016 May 17; 50(10):5234-42. PubMed ID: 27128346 [Abstract] [Full Text] [Related]
7. Stable Electrochemical Determination of Dopamine by a Fluorine-Terminated {001}-Exposed TiO2 Single Crystal Sensor. Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Anal Chem; 2020 Jul 21; 92(14):9629-9639. PubMed ID: 32605362 [Abstract] [Full Text] [Related]
8. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Pei DN, Zhang AY, Pan XQ, Si Y, Yu HQ. Anal Chem; 2018 Mar 06; 90(5):3165-3173. PubMed ID: 29461045 [Abstract] [Full Text] [Related]
9. Photochemical pollutant degradation on facet junction-engineered TiO2 promoted by organic arsenical: Governing roles of arsenic-terminated surface chemistry and bulk-free radical speciation. Zhang AY, Zhou Y, Liu X, Huang NH, Niu HH. J Hazard Mater; 2020 May 15; 390():122159. PubMed ID: 31999957 [Abstract] [Full Text] [Related]
10. Humic substances mediated superior photochemical pollutant conversion on defective TiO2 in environmentally relevant matrices: The key roles of oxygen vacancy in surface interactions, oxidant activation and radical generation. Hu S, Ye L, Tian BJ, Li JY, Zhang AY, Zhao L, Zhang C, Jiang C, Lin ZX, Da W, Wei QX. Sci Total Environ; 2024 Apr 15; 921():171145. PubMed ID: 38395167 [Abstract] [Full Text] [Related]
11. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. Serna-Galvis EA, Giraldo-Aguirre AL, Silva-Agredo J, Flórez-Acosta OA, Torres-Palma RA. Environ Sci Pollut Res Int; 2017 Mar 15; 24(7):6339-6352. PubMed ID: 26916268 [Abstract] [Full Text] [Related]
12. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect. Kumar A, Barbhuiya NH, Singh SP. Chemosphere; 2022 Nov 15; 307(Pt 2):135878. PubMed ID: 35932919 [Abstract] [Full Text] [Related]
13. Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Murgolo S, Franz S, Arab H, Bestetti M, Falletta E, Mascolo G. Water Res; 2019 Nov 01; 164():114920. PubMed ID: 31401328 [Abstract] [Full Text] [Related]
14. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Zhang AY, Wang WK, Pei DN, Yu HQ. Water Res; 2016 Apr 01; 92():78-86. PubMed ID: 26841231 [Abstract] [Full Text] [Related]
15. A promising electrode material modified by Nb-doped TiO2 nanotubes for electrochemical degradation of AR 73. Xu L, Liang G, Yin M. Chemosphere; 2017 Apr 01; 173():425-434. PubMed ID: 28129621 [Abstract] [Full Text] [Related]
16. Fabrication of a permeable SnO2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater. Yang C, Fan Y, Shang S, Li P, Li XY. Environ Int; 2021 Dec 01; 157():106827. PubMed ID: 34418849 [Abstract] [Full Text] [Related]
17. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. Zhai C, Zhu M, Ren F, Yao Z, Du Y, Yang P. J Hazard Mater; 2013 Dec 15; 263 Pt 2():291-8. PubMed ID: 24091125 [Abstract] [Full Text] [Related]
18. Electrochemical oxidation of 4-chlorophenol for wastewater treatment using highly active UV treated TiO2 nanotubes. Tian M, Thind SS, Dondapati JS, Li X, Chen A. Chemosphere; 2018 Oct 15; 209():182-190. PubMed ID: 29929124 [Abstract] [Full Text] [Related]
19. Highly efficient modified lead oxide electrode using a spin coating/electrodeposition mode on titanium for electrochemical treatment of pharmaceutical pollutant. Boukhchina S, Akrout H, Berling D, Bousselmi L. Chemosphere; 2019 Apr 15; 221():356-365. PubMed ID: 30641377 [Abstract] [Full Text] [Related]
20. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, Wang L. Chemosphere; 2014 Oct 15; 113():48-55. PubMed ID: 25065789 [Abstract] [Full Text] [Related] Page: [Next] [New Search]