These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
393 related items for PubMed ID: 28892789
1. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, Basri H. Biomed Pharmacother; 2017 Nov; 95():780-788. PubMed ID: 28892789 [Abstract] [Full Text] [Related]
4. GEPT extract reduces Abeta deposition by regulating the balance between production and degradation of Abeta in APPV717I transgenic mice. Tian J, Shi J, Zhang L, Yin J, Hu Q, Xu Y, Sheng S, Wang P, Ren Y, Wang R, Wang Y. Curr Alzheimer Res; 2009 Apr; 6(2):118-31. PubMed ID: 19355846 [Abstract] [Full Text] [Related]
5. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease. Rockenstein E, Torrance M, Mante M, Adame A, Paulino A, Rose JB, Crews L, Moessler H, Masliah E. J Neurosci Res; 2006 May 15; 83(7):1252-61. PubMed ID: 16511867 [Abstract] [Full Text] [Related]
6. Mercury-induced amyloid-beta (Aβ) accumulation in the brain is mediated by disruption of Aβ transport. Kim DK, Park JD, Choi BS. J Toxicol Sci; 2014 Aug 15; 39(4):625-35. PubMed ID: 25056787 [Abstract] [Full Text] [Related]
7. Glucocorticoids facilitate astrocytic amyloid-β peptide deposition by increasing the expression of APP and BACE1 and decreasing the expression of amyloid-β-degrading proteases. Wang Y, Li M, Tang J, Song M, Xu X, Xiong J, Li J, Bai Y. Endocrinology; 2011 Jul 15; 152(7):2704-15. PubMed ID: 21558319 [Abstract] [Full Text] [Related]
8. RAGE mediates Aβ accumulation in a mouse model of Alzheimer's disease via modulation of β- and γ-secretase activity. Fang F, Yu Q, Arancio O, Chen D, Gore SS, Yan SS, Yan SF. Hum Mol Genet; 2018 Mar 15; 27(6):1002-1014. PubMed ID: 29329433 [Abstract] [Full Text] [Related]
9. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KMA, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, Solje E, Tahvanainen E, Pirttimäki T, Kurki M, Paananen J, Rauramaa T, Miettinen P, Mäkinen P, Leinonen V, Soininen H, Airenne K, Tanzi RE, Tanila H, Haapasalo A, Hiltunen M. Neurobiol Dis; 2016 Jan 15; 85():187-205. PubMed ID: 26563932 [Abstract] [Full Text] [Related]
10. Mitochondria are devoid of amyloid β-protein (Aβ)-producing secretases: Evidence for unlikely occurrence within mitochondria of Aβ generation from amyloid precursor protein. Mamada N, Tanokashira D, Ishii K, Tamaoka A, Araki W. Biochem Biophys Res Commun; 2017 Apr 29; 486(2):321-328. PubMed ID: 28302486 [Abstract] [Full Text] [Related]
11. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Abuelezz SA, Hendawy N. Life Sci; 2021 May 15; 273():119310. PubMed ID: 33667517 [Abstract] [Full Text] [Related]
12. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F, Song W. Eur J Neurosci; 2013 Jun 15; 37(12):1962-9. PubMed ID: 23773065 [Abstract] [Full Text] [Related]
13. Beta-amyloid secretases and beta-amloid degrading enzyme expression in lens. Li G, Percontino L, Sun Q, Qazi AS, Frederikse PH. Mol Vis; 2003 May 01; 9():179-83. PubMed ID: 12740567 [Abstract] [Full Text] [Related]
14. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Zhang M, Deng Y, Luo Y, Zhang S, Zou H, Cai F, Wada K, Song W. J Neurochem; 2012 Mar 01; 120(6):1129-38. PubMed ID: 22212137 [Abstract] [Full Text] [Related]
15. The contribution of activated astrocytes to Aβ production: implications for Alzheimer's disease pathogenesis. Zhao J, O'Connor T, Vassar R. J Neuroinflammation; 2011 Nov 02; 8():150. PubMed ID: 22047170 [Abstract] [Full Text] [Related]
16. Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer's disease. Yang H, Yang H, Xie Z, Wang P, Bi J. Neurol Res; 2015 Jan 02; 37(1):84-91. PubMed ID: 25005263 [Abstract] [Full Text] [Related]
17. Effect of High Cholesterol Regulation of LRP1 and RAGE on Aβ Transport Across the Blood-Brain Barrier in Alzheimer's Disease. Zhou R, Chen LL, Yang H, Li L, Liu J, Chen L, Hong WJ, Wang CG, Ma JJ, Huang J, Zhou XF, Liu D, Zhou HD. Curr Alzheimer Res; 2021 Jan 02; 18(5):428-442. PubMed ID: 34488598 [Abstract] [Full Text] [Related]
18. Beta-secretase/BACE1 promotes APP endocytosis and processing in the endosomes and on cell membrane. Wang M, Jing T, Wang X, Yao D. Neurosci Lett; 2018 Oct 15; 685():63-67. PubMed ID: 30120949 [Abstract] [Full Text] [Related]
19. BACE1: the beta-secretase enzyme in Alzheimer's disease. Vassar R. J Mol Neurosci; 2004 Oct 15; 23(1-2):105-14. PubMed ID: 15126696 [Abstract] [Full Text] [Related]
20. Pro-oxidant diet enhances β/γ secretase-mediated APP processing in APP/PS1 transgenic mice. Choudhry F, Howlett DR, Richardson JC, Francis PT, Williams RJ. Neurobiol Aging; 2012 May 15; 33(5):960-8. PubMed ID: 20724034 [Abstract] [Full Text] [Related] Page: [Next] [New Search]