These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 28893947

  • 21. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.
    J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211
    [Abstract] [Full Text] [Related]

  • 22. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
    Lough KJ, Byrd KM, Spitzer DC, Williams SE.
    J Dent Res; 2017 Oct; 96(11):1210-1220. PubMed ID: 28817360
    [Abstract] [Full Text] [Related]

  • 23. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development.
    Kano S, Higashihori N, Thiha P, Takechi M, Iseki S, Moriyama K.
    Biochem Biophys Res Commun; 2022 Apr 02; 598():74-80. PubMed ID: 35151207
    [Abstract] [Full Text] [Related]

  • 24. Ectopic Hedgehog Signaling Causes Cleft Palate and Defective Osteogenesis.
    Hammond NL, Brookes KJ, Dixon MJ.
    J Dent Res; 2018 Dec 02; 97(13):1485-1493. PubMed ID: 29975848
    [Abstract] [Full Text] [Related]

  • 25. Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate.
    Jin JZ, Ding J.
    Dev Dyn; 2006 Feb 02; 235(2):539-46. PubMed ID: 16284941
    [Abstract] [Full Text] [Related]

  • 26. Insulin-like growth factor II receptor, transforming growth factor-beta, and Cdk4 expression and the developmental epigenetics of mouse palate morphogenesis and dysmorphogenesis.
    Melnick M, Chen H, Buckley S, Warburton D, Jaskoll T.
    Dev Dyn; 1998 Jan 02; 211(1):11-25. PubMed ID: 9438420
    [Abstract] [Full Text] [Related]

  • 27. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
    Iwata J, Suzuki A, Yokota T, Ho TV, Pelikan R, Urata M, Sanchez-Lara PA, Chai Y.
    Development; 2014 Feb 02; 141(4):909-17. PubMed ID: 24496627
    [Abstract] [Full Text] [Related]

  • 28. Biological mechanisms in palatogenesis and cleft palate.
    Meng L, Bian Z, Torensma R, Von den Hoff JW.
    J Dent Res; 2009 Jan 02; 88(1):22-33. PubMed ID: 19131313
    [Abstract] [Full Text] [Related]

  • 29. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y.
    Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827
    [Abstract] [Full Text] [Related]

  • 30. Menin is required in cranial neural crest for palatogenesis and perinatal viability.
    Engleka KA, Wu M, Zhang M, Antonucci NB, Epstein JA.
    Dev Biol; 2007 Nov 15; 311(2):524-37. PubMed ID: 17927973
    [Abstract] [Full Text] [Related]

  • 31. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM, Shiomi N, Chen J, Saito T, Yamamoto T, Ito Y, Bringas P, Chai Y, Shuler CF.
    Dev Biol; 2005 Feb 01; 278(1):193-202. PubMed ID: 15649471
    [Abstract] [Full Text] [Related]

  • 32. A dosage-dependent role for Spry2 in growth and patterning during palate development.
    Welsh IC, Hagge-Greenberg A, O'Brien TP.
    Mech Dev; 2007 Feb 01; 124(9-10):746-61. PubMed ID: 17693063
    [Abstract] [Full Text] [Related]

  • 33. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L.
    J Anat; 2018 Aug 01; 233(2):222-242. PubMed ID: 29797482
    [Abstract] [Full Text] [Related]

  • 34. RERE deficiency contributes to the development of orofacial clefts in humans and mice.
    Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA.
    Hum Mol Genet; 2021 May 12; 30(7):595-602. PubMed ID: 33772547
    [Abstract] [Full Text] [Related]

  • 35. Molecular contribution to cleft palate production in cleft lip mice.
    Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T.
    Congenit Anom (Kyoto); 2014 May 12; 54(2):94-9. PubMed ID: 24206222
    [Abstract] [Full Text] [Related]

  • 36. Sox9CreER-mediated deletion of β-catenin in palatal mesenchyme results in delayed palatal elevation accompanied with repressed canonical Wnt signaling and reduced actin polymerization.
    Pang X, Wang X, Wang Y, Pu L, Shi J, Burdekin N, Shi B, Li C.
    Genesis; 2021 Sep 12; 59(9):e23441. PubMed ID: 34390177
    [Abstract] [Full Text] [Related]

  • 37. Tbx1 is necessary for palatal elongation and elevation.
    Goudy S, Law A, Sanchez G, Baldwin HS, Brown C.
    Mech Dev; 2010 Sep 12; 127(5-6):292-300. PubMed ID: 20214979
    [Abstract] [Full Text] [Related]

  • 38. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C.
    PLoS One; 2015 Sep 12; 10(9):e0136951. PubMed ID: 26332583
    [Abstract] [Full Text] [Related]

  • 39. MEMO1 drives cranial endochondral ossification and palatogenesis.
    Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T.
    Dev Biol; 2016 Jul 15; 415(2):278-295. PubMed ID: 26746790
    [Abstract] [Full Text] [Related]

  • 40. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
    Chen Y, Wang Z, Chen Y, Zhang Y.
    Cell Tissue Res; 2019 May 15; 376(2):199-210. PubMed ID: 30413887
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.