These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 28893947

  • 41. Molecular and Cellular Mechanisms of Palate Development.
    Li C, Lan Y, Jiang R.
    J Dent Res; 2017 Oct; 96(11):1184-1191. PubMed ID: 28745929
    [Abstract] [Full Text] [Related]

  • 42. Dexamethasone alters epithelium proliferation and survival and suppresses Wnt/β-catenin signaling in developing cleft palate.
    Hu X, Gao JH, Liao YJ, Tang SJ, Lu F.
    Food Chem Toxicol; 2013 Jun; 56():67-74. PubMed ID: 23416130
    [Abstract] [Full Text] [Related]

  • 43. Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity.
    Brock LJ, Economou AD, Cobourne MT, Green JB.
    J Anat; 2016 Mar; 228(3):464-73. PubMed ID: 26689739
    [Abstract] [Full Text] [Related]

  • 44. Hoxa2 plays a direct role in murine palate development.
    Smith TM, Wang X, Zhang W, Kulyk W, Nazarali AJ.
    Dev Dyn; 2009 Sep; 238(9):2364-73. PubMed ID: 19653318
    [Abstract] [Full Text] [Related]

  • 45. Developmental expression and CORT-regulation of TGF-beta and EGF receptor mRNA during mouse palatal morphogenesis: correlation between CORT-induced cleft palate and TGF-beta 2 mRNA expression.
    Jaskoll T, Choy HA, Chen H, Melnick M.
    Teratology; 1996 Jul; 54(1):34-44. PubMed ID: 8916368
    [Abstract] [Full Text] [Related]

  • 46. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8.
    Zhao Y, Guo YJ, Tomac AC, Taylor NR, Grinberg A, Lee EJ, Huang S, Westphal H.
    Proc Natl Acad Sci U S A; 1999 Dec 21; 96(26):15002-6. PubMed ID: 10611327
    [Abstract] [Full Text] [Related]

  • 47. Gene Regulatory Networks and Signaling Pathways in Palatogenesis and Cleft Palate: A Comprehensive Review.
    Won HJ, Kim JW, Won HS, Shin JO.
    Cells; 2023 Jul 27; 12(15):. PubMed ID: 37566033
    [Abstract] [Full Text] [Related]

  • 48. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis.
    Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y.
    Development; 2023 Mar 01; 150(5):. PubMed ID: 36825984
    [Abstract] [Full Text] [Related]

  • 49. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus.
    Lin C, Fisher AV, Yin Y, Maruyama T, Veith GM, Dhandha M, Huang GJ, Hsu W, Ma L.
    Dev Biol; 2011 Aug 01; 356(1):40-50. PubMed ID: 21600200
    [Abstract] [Full Text] [Related]

  • 50. The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models.
    Gritli-Linde A.
    Curr Top Dev Biol; 2008 Aug 01; 84():37-138. PubMed ID: 19186243
    [Abstract] [Full Text] [Related]

  • 51. Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice.
    Hilliard SA, Yu L, Gu S, Zhang Z, Chen YP.
    J Anat; 2005 Nov 01; 207(5):655-67. PubMed ID: 16313398
    [Abstract] [Full Text] [Related]

  • 52. Protein Arginine Methyltransferase PRMT1 Is Essential for Palatogenesis.
    Gou Y, Li J, Jackson-Weaver O, Wu J, Zhang T, Gupta R, Cho I, Ho TV, Chen Y, Li M, Richard S, Wang J, Chai Y, Xu J.
    J Dent Res; 2018 Dec 01; 97(13):1510-1518. PubMed ID: 29986157
    [Abstract] [Full Text] [Related]

  • 53. Wnt signaling in lip and palate development.
    He F, Chen Y.
    Front Oral Biol; 2012 Dec 01; 16():81-90. PubMed ID: 22759672
    [Abstract] [Full Text] [Related]

  • 54. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y.
    Hum Mol Genet; 2017 Mar 01; 26(5):860-872. PubMed ID: 28069795
    [Abstract] [Full Text] [Related]

  • 55. Vax1 Plays an Indirect Role in the Etiology of Murine Cleft Palate.
    Geoghegan F, Xavier GM, Birjandi AA, Seppala M, Cobourne MT.
    J Dent Res; 2017 Dec 01; 96(13):1555-1562. PubMed ID: 28771384
    [Abstract] [Full Text] [Related]

  • 56. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling.
    Matsumura K, Taketomi T, Yoshizaki K, Arai S, Sanui T, Yoshiga D, Yoshimura A, Nakamura S.
    Biochem Biophys Res Commun; 2011 Jan 28; 404(4):1076-82. PubMed ID: 21195053
    [Abstract] [Full Text] [Related]

  • 57. PAX7, PAX9 and RYK Expression in Cleft Affected Tissue.
    Vaivads M, Akota I, Pilmane M.
    Medicina (Kaunas); 2021 Oct 08; 57(10):. PubMed ID: 34684112
    [Abstract] [Full Text] [Related]

  • 58. Multiple functions of Snail family genes during palate development in mice.
    Murray SA, Oram KF, Gridley T.
    Development; 2007 May 08; 134(9):1789-97. PubMed ID: 17376812
    [Abstract] [Full Text] [Related]

  • 59. The etiology of cleft palate formation in BMP7-deficient mice.
    Kouskoura T, Kozlova A, Alexiou M, Blumer S, Zouvelou V, Katsaros C, Chiquet M, Mitsiadis TA, Graf D.
    PLoS One; 2013 May 08; 8(3):e59463. PubMed ID: 23516636
    [Abstract] [Full Text] [Related]

  • 60. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development.
    Hill C, Jacobs B, Kennedy L, Rohde S, Zhou B, Baldwin S, Goudy S.
    Cell Tissue Res; 2015 Sep 08; 361(3):711-22. PubMed ID: 25759071
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.