These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


867 related items for PubMed ID: 28898956

  • 1. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X, Peng L, Yao X, Cui S, Hu Y, You C, Chi T.
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. PM2.5 Prediction with a Novel Multi-Step-Ahead Forecasting Model Based on Dynamic Wind Field Distance.
    Yang M, Fan H, Zhao K.
    Int J Environ Res Public Health; 2019 Nov 14; 16(22):. PubMed ID: 31739449
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting.
    Bai Y, Zeng B, Li C, Zhang J.
    Chemosphere; 2019 May 14; 222():286-294. PubMed ID: 30708163
    [Abstract] [Full Text] [Related]

  • 7. Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network.
    Zhao F, Liang Z, Zhang Q, Seng D, Chen X.
    Comput Intell Neurosci; 2021 May 14; 2021():1616806. PubMed ID: 34712315
    [Abstract] [Full Text] [Related]

  • 8. Air Pollutant Concentration Forecasting Using Long Short-Term Memory Based on Wavelet Transform and Information Gain: A Case Study of Beijing.
    Liu B, Guo X, Lai M, Wang Q.
    Comput Intell Neurosci; 2020 May 14; 2020():8834699. PubMed ID: 33061948
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ, Liu Y, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2012 May 14; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [Abstract] [Full Text] [Related]

  • 11. Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm.
    Bai X, Zhang N, Cao X, Chen W.
    PeerJ; 2024 May 14; 12():e17811. PubMed ID: 39131620
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A hybrid deep learning model for regional O3 and NO2 concentrations prediction based on spatiotemporal dependencies in air quality monitoring network.
    Wu CL, He HD, Song RF, Zhu XH, Peng ZR, Fu QY, Pan J.
    Environ Pollut; 2023 Mar 01; 320():121075. PubMed ID: 36641063
    [Abstract] [Full Text] [Related]

  • 15. Forecasting air quality time series using deep learning.
    Freeman BS, Taylor G, Gharabaghi B, Thé J.
    J Air Waste Manag Assoc; 2018 Aug 01; 68(8):866-886. PubMed ID: 29652217
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.
    Wang P, Liu Y, Qin Z, Zhang G.
    Sci Total Environ; 2015 Feb 01; 505():1202-12. PubMed ID: 25461118
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations.
    Arhami M, Kamali N, Rajabi MM.
    Environ Sci Pollut Res Int; 2013 Jul 01; 20(7):4777-89. PubMed ID: 23292230
    [Abstract] [Full Text] [Related]

  • 20. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China.
    Guo Z, Jing X, Ling Y, Yang Y, Jing N, Yuan R, Liu Y.
    Sci Rep; 2024 Aug 02; 14(1):17923. PubMed ID: 39095454
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.