These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 28912444
1. Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Chun BH, Kim KH, Jeon HH, Lee SH, Jeon CO. Sci Rep; 2017 Sep 14; 7(1):11504. PubMed ID: 28912444 [Abstract] [Full Text] [Related]
2. Unraveling the carbohydrate metabolic characteristics of Leuconostoc mesenteroides J18 through metabolite and transcriptome analyses. Hye Baek J, Min Han D, Gyu Choi D, Ok Jeon C. Food Chem; 2024 Mar 01; 435():137594. PubMed ID: 37804726 [Abstract] [Full Text] [Related]
3. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Özcan E, Selvi SS, Nikerel E, Teusink B, Toksoy Öner E, Çakır T. Appl Microbiol Biotechnol; 2019 Apr 01; 103(7):3153-3165. PubMed ID: 30712128 [Abstract] [Full Text] [Related]
4. Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation. Jeong SE, Chun BH, Kim KH, Park D, Roh SW, Lee SH, Jeon CO. Food Microbiol; 2018 Dec 01; 76():1-10. PubMed ID: 30166128 [Abstract] [Full Text] [Related]
5. Isolation and Characterization of Kimchi Starters Leuconostoc mesenteroides PBio03 and Leuconostoc mesenteroides PBio104 for Manufacture of Commercial Kimchi. Lee KW, Kim GS, Baek AH, Hwang HS, Kwon DY, Kim SG, Lee SY. J Microbiol Biotechnol; 2020 Jul 28; 30(7):1060-1066. PubMed ID: 32270659 [Abstract] [Full Text] [Related]
6. Comparative genome analysis provides shreds of molecular evidence for reclassification of Leuconostoc mesenteroides MTCC 10508 as a strain of Leu. suionicum. Kaushal G, Singh SP. Genomics; 2020 Nov 28; 112(6):4023-4031. PubMed ID: 32619577 [Abstract] [Full Text] [Related]
7. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO. Int J Food Microbiol; 2012 Feb 15; 153(3):378-87. PubMed ID: 22189023 [Abstract] [Full Text] [Related]
8. Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Kim KH, Chun BH, Baek JH, Roh SW, Lee SH, Jeon CO. Food Microbiol; 2020 Apr 15; 86():103341. PubMed ID: 31703875 [Abstract] [Full Text] [Related]
9. A proposal of Leuconostoc mesenteroides subsp. jonggajibkimchii subsp. nov. and reclassification of Leuconostoc mesenteroides subsp. suionicum (Gu et al., 2012) as Leuconostoc suionicum sp. nov. based on complete genome sequences. Jeon HH, Kim KH, Chun BH, Ryu BH, Han NS, Jeon CO. Int J Syst Evol Microbiol; 2017 Jul 15; 67(7):2225-2230. PubMed ID: 28671527 [Abstract] [Full Text] [Related]
10. Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Koduru L, Kim Y, Bang J, Lakshmanan M, Han NS, Lee DY. Sci Rep; 2017 Nov 16; 7(1):15721. PubMed ID: 29147021 [Abstract] [Full Text] [Related]
11. Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese. Mataragas M. Food Microbiol; 2020 May 16; 87():103392. PubMed ID: 31948633 [Abstract] [Full Text] [Related]
12. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. Int J Food Microbiol; 2013 May 15; 163(2-3):171-9. PubMed ID: 23558201 [Abstract] [Full Text] [Related]
13. Metagenomic analysis of kimchi, a traditional Korean fermented food. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO. Appl Environ Microbiol; 2011 Apr 15; 77(7):2264-74. PubMed ID: 21317261 [Abstract] [Full Text] [Related]
15. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. Food Microbiol; 2019 Oct 15; 83():36-47. PubMed ID: 31202417 [Abstract] [Full Text] [Related]
16. DNAzyme-based quantitative loop-mediated isothermal amplification for strain-specific detection of starter kimchi fermented with Leuconostoc mesenteroides WiKim32. Lee M, Song JH, Shim WB, Chang JY. Food Chem; 2020 Dec 15; 333():127343. PubMed ID: 32663746 [Abstract] [Full Text] [Related]
18. Genomic and metabolic features of the Bacillus amyloliquefaciens group- B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis. Chun BH, Kim KH, Jeong SE, Jeon CO. Food Microbiol; 2019 Feb 15; 77():146-157. PubMed ID: 30297045 [Abstract] [Full Text] [Related]
19. Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Lee SH, Whon TW, Roh SW, Jeon CO. Appl Microbiol Biotechnol; 2020 Sep 15; 104(18):7731-7744. PubMed ID: 32749526 [Abstract] [Full Text] [Related]
20. Functional Identification of the Dextransucrase Gene of Leuconostoc mesenteroides DRP105. Du R, Zhou Z, Han Y. Int J Mol Sci; 2020 Sep 09; 21(18):. PubMed ID: 32916950 [Abstract] [Full Text] [Related] Page: [Next] [New Search]