These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 28925260

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Elimination of carbon catabolite repression in Clostridium tyrobutyricum for enhanced butyric acid production from lignocellulosic hydrolysates.
    Fu H, Zhang H, Guo X, Yang L, Wang J.
    Bioresour Technol; 2022 Aug; 357():127320. PubMed ID: 35589044
    [Abstract] [Full Text] [Related]

  • 27. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang IC, Yang ST.
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [Abstract] [Full Text] [Related]

  • 28. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.
    Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z.
    Bioresour Technol; 2009 Jul; 100(13):3403-9. PubMed ID: 19297150
    [Abstract] [Full Text] [Related]

  • 29. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.
    Storari M, Kulli S, Wüthrich D, Bruggmann R, Berthoud H, Arias-Roth E.
    Food Microbiol; 2016 Oct; 59():213-23. PubMed ID: 27375262
    [Abstract] [Full Text] [Related]

  • 30. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum.
    Ma C, Kojima K, Xu N, Mobley J, Zhou L, Yang ST, Liu XM.
    J Biotechnol; 2015 Jan 10; 193():108-19. PubMed ID: 25449011
    [Abstract] [Full Text] [Related]

  • 31. Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes.
    He F, Qin S, Yang Z, Bai X, Suo Y, Wang J.
    Bioresour Technol; 2020 May 10; 304():122977. PubMed ID: 32062499
    [Abstract] [Full Text] [Related]

  • 32. Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum.
    Fu H, Lin M, Tang IC, Wang J, Yang ST.
    Biotechnol Bioeng; 2021 Feb 10; 118(2):770-783. PubMed ID: 33058166
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.
    Peterson EC, Daugulis AJ.
    Biotechnol Bioeng; 2014 Mar 10; 111(3):537-44. PubMed ID: 23996152
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor.
    Wei D, Liu X, Yang ST.
    Bioresour Technol; 2013 Feb 10; 129():553-60. PubMed ID: 23270719
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.