These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
423 related items for PubMed ID: 28929610
1. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH, Cahoon RE, Horn PJ, Shi H, Prakash RR, Cai Y, Hearney M, Chapman KD, Cahoon EB, Schwender J, Shanklin J. Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [Abstract] [Full Text] [Related]
2. Expression of a Lychee PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE with an Escherichia coli CYCLOPROPANE SYNTHASE Enhances Cyclopropane Fatty Acid Accumulation in Camelina Seeds. Yu XH, Cai Y, Chai J, Schwender J, Shanklin J. Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [Abstract] [Full Text] [Related]
4. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Marmon S, Sturtevant D, Herrfurth C, Chapman K, Stymne S, Feussner I. Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891 [Abstract] [Full Text] [Related]
5. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Cuphea Seed Oil. Iskandarov U, Silva JE, Kim HJ, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847 [Abstract] [Full Text] [Related]
6. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Yang W, Wang G, Li J, Bates PD, Wang X, Allen DK. Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849 [Abstract] [Full Text] [Related]
7. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR, Kang J, Qi X, Lu C. Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [Abstract] [Full Text] [Related]
8. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z, Wu Q, Dalal J, Vasani N, Lopez HO, Sederoff HW, Qu R. PLoS One; 2017 Sep; 12(2):e0172296. PubMed ID: 28212406 [Abstract] [Full Text] [Related]
9. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Bansal S, Durrett TP. Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412 [Abstract] [Full Text] [Related]
10. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. Lunn D, Smith GA, Wallis JG, Browse J. Plant Physiol; 2018 Jun; 177(2):553-564. PubMed ID: 29678860 [Abstract] [Full Text] [Related]
11. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. Abdullah HM, Pang N, Chilcoat B, Shachar-Hill Y, Schnell DJ, Dhankher OP. Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576 [Abstract] [Full Text] [Related]
12. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HT, Shanklin J, Clemente TE, Cahoon EB. Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [Abstract] [Full Text] [Related]
13. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa. Sarvas C, Puttick D, Forseille L, Cram D, Smith MA. Planta; 2021 Jul 21; 254(2):32. PubMed ID: 34287699 [Abstract] [Full Text] [Related]
14. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. Plant Biotechnol J; 2018 May 21; 16(5):1034-1045. PubMed ID: 28975735 [Abstract] [Full Text] [Related]
15. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol. Yin Y, Raboanatahiry N, Chen K, Chen X, Tian T, Jia J, He H, He J, Guo Z, Yu L, Li M. Plant J; 2022 Dec 21; 112(5):1141-1158. PubMed ID: 36209492 [Abstract] [Full Text] [Related]
16. Expression of a high-activity diacylglycerol acetyltransferase results in enhanced synthesis of acetyl-TAG in camelina seed oil. Alkotami L, Kornacki C, Campbell S, McIntosh G, Wilson C, Tran TNT, Durrett TP. Plant J; 2021 May 21; 106(4):953-964. PubMed ID: 33619818 [Abstract] [Full Text] [Related]
17. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Bates PD, Browse J. Plant J; 2011 Nov 21; 68(3):387-99. PubMed ID: 21711402 [Abstract] [Full Text] [Related]
18. Expression of Castor LPAT2 Enhances Ricinoleic Acid Content at the sn-2 Position of Triacylglycerols in Lesquerella Seed. Chen GQ, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond PJ, Lin JT. Int J Mol Sci; 2016 Apr 06; 17(4):507. PubMed ID: 27058535 [Abstract] [Full Text] [Related]
19. Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates. Demski K, Jeppson S, Stymne S, Lager I. Lipids; 2021 Nov 06; 56(6):591-602. PubMed ID: 34463366 [Abstract] [Full Text] [Related]
20. Assessing the biotechnological potential of cotton type-1 and type-2 diacylglycerol acyltransferases in transgenic systems. Shockey J, Parchuri P, Thyssen GN, Bates PD. Plant Physiol Biochem; 2023 Mar 06; 196():940-951. PubMed ID: 36889233 [Abstract] [Full Text] [Related] Page: [Next] [New Search]