These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 28930864

  • 1. Neural Correlates to the Increase in Maximal Force after Dexamethasone Administration.
    Baudry S, Motta G, Botter A, Duchateau J, Minetto MA.
    Med Sci Sports Exerc; 2018 Feb; 50(2):218-224. PubMed ID: 28930864
    [Abstract] [Full Text] [Related]

  • 2. Effects of short-term dexamethasone administration on corticospinal excitability.
    Baudry S, Lanfranco F, Merletti R, Duchateau J, Minetto MA.
    Med Sci Sports Exerc; 2014 Apr; 46(4):695-701. PubMed ID: 24051659
    [Abstract] [Full Text] [Related]

  • 3. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL.
    Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508
    [Abstract] [Full Text] [Related]

  • 4. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation.
    Kojima S, Onishi H, Sugawara K, Kirimoto H, Suzuki M, Tamaki H.
    BMC Neurosci; 2013 Apr 02; 14():43. PubMed ID: 23547559
    [Abstract] [Full Text] [Related]

  • 5. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J, Lang P, Strutton PH.
    Clin Neurophysiol; 2008 Dec 02; 119(12):2839-45. PubMed ID: 18976953
    [Abstract] [Full Text] [Related]

  • 6. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex.
    Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC.
    J Physiol; 2008 Nov 01; 586(21):5147-59. PubMed ID: 18787036
    [Abstract] [Full Text] [Related]

  • 7. Short interval intracortical inhibition and facilitation during the silent period in human.
    Ni Z, Gunraj C, Chen R.
    J Physiol; 2007 Sep 15; 583(Pt 3):971-82. PubMed ID: 17656435
    [Abstract] [Full Text] [Related]

  • 8. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A, Matsunaga K, Tanaka N, Rothwell JC.
    Clin Neurophysiol; 2006 Apr 15; 117(4):864-70. PubMed ID: 16495147
    [Abstract] [Full Text] [Related]

  • 9. An optimal protocol for measurement of corticospinal excitability, short intracortical inhibition and intracortical facilitation in the rectus femoris.
    Brownstein CG, Ansdell P, Škarabot J, Howatson G, Goodall S, Thomas K.
    J Neurol Sci; 2018 Nov 15; 394():45-56. PubMed ID: 30216757
    [Abstract] [Full Text] [Related]

  • 10. Acute Effect of Noradrenergic Modulation on Motor Output Adjustment in Men.
    Klass M, Roelands B, Meeusen R, Duchateau J.
    Med Sci Sports Exerc; 2018 Aug 15; 50(8):1579-1587. PubMed ID: 29570538
    [Abstract] [Full Text] [Related]

  • 11. Vibration stimulation during non-fatiguing tonic contraction induces outlasting neuroplastic effects.
    Christova M, Rafolt D, Mayr W, Wilfling B, Gallasch E.
    J Electromyogr Kinesiol; 2010 Aug 15; 20(4):627-35. PubMed ID: 20363152
    [Abstract] [Full Text] [Related]

  • 12. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle.
    Urbach D, Awiszus F.
    Exp Brain Res; 2002 Jan 15; 142(1):25-31. PubMed ID: 11797081
    [Abstract] [Full Text] [Related]

  • 13. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA, Lungholt BK, Nyborg K, Nielsen JB.
    Exp Brain Res; 2004 Nov 15; 159(2):197-205. PubMed ID: 15549279
    [Abstract] [Full Text] [Related]

  • 14. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 15. Fatigue-induced changes in short-interval intracortical inhibition and the silent period with stimulus intensities evoking maximal versus submaximal responses.
    Brownstein CG, Espeit L, Royer N, Lapole T, Millet GY.
    J Appl Physiol (1985); 2020 Aug 01; 129(2):205-217. PubMed ID: 32584668
    [Abstract] [Full Text] [Related]

  • 16. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles.
    Pitman BM, Semmler JG.
    J Appl Physiol (1985); 2012 Sep 01; 113(6):929-36. PubMed ID: 22837166
    [Abstract] [Full Text] [Related]

  • 17. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN, Bowtell JL, Kossev AR.
    Exp Physiol; 2009 Jan 01; 94(1):103-16. PubMed ID: 18658234
    [Abstract] [Full Text] [Related]

  • 18. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL.
    J Physiol; 2006 Jun 01; 573(Pt 2):511-23. PubMed ID: 16556656
    [Abstract] [Full Text] [Related]

  • 19. Intracortical facilitation within the migraine motor cortex depends on the stimulation intensity. A paired-pulse TMS study.
    Cosentino G, Di Marco S, Ferlisi S, Valentino F, Capitano WM, Fierro B, Brighina F.
    J Headache Pain; 2018 Aug 09; 19(1):65. PubMed ID: 30094517
    [Abstract] [Full Text] [Related]

  • 20. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex.
    Lee H, Gunraj C, Chen R.
    J Physiol; 2007 May 01; 580(Pt.3):1021-32. PubMed ID: 17303638
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.