These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 28932263
1. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313? Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA. Biotechnol Biofuels; 2017; 10():222. PubMed ID: 28932263 [Abstract] [Full Text] [Related]
2. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
3. Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis. Artzi L, Morag E, Barak Y, Lamed R, Bayer EA. mBio; 2015 May 19; 6(3):e00411-15. PubMed ID: 25991683 [Abstract] [Full Text] [Related]
4. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA. mBio; 2012 Dec 11; 3(6):. PubMed ID: 23232718 [Abstract] [Full Text] [Related]
5. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Moraïs S, Stern J, Kahn A, Galanopoulou AP, Yoav S, Shamshoum M, Smith MA, Hatzinikolaou DG, Arnold FH, Bayer EA. Biotechnol Biofuels; 2016 Dec 11; 9():164. PubMed ID: 27493686 [Abstract] [Full Text] [Related]
6. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA. Biotechnol Biofuels; 2013 Dec 16; 6(1):182. PubMed ID: 24341331 [Abstract] [Full Text] [Related]
7. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788 [Abstract] [Full Text] [Related]
8. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature. Stern J, Moraïs S, Lamed R, Bayer EA. mBio; 2016 Apr 05; 7(2):e00083. PubMed ID: 27048796 [Abstract] [Full Text] [Related]
9. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Shinoda S, Kurosaki M, Kokuzawa T, Hirano K, Takano H, Ueda K, Haruki M, Hirano N. Appl Biochem Biotechnol; 2019 Mar 05; 187(3):994-1010. PubMed ID: 30136170 [Abstract] [Full Text] [Related]
10. Colocalization and Disposition of Cellulosomes in Clostridium clariflavum as Revealed by Correlative Superresolution Imaging. Artzi L, Dadosh T, Milrot E, Moraïs S, Levin-Zaidman S, Morag E, Bayer EA. mBio; 2018 Feb 06; 9(1):. PubMed ID: 29437917 [Abstract] [Full Text] [Related]
11. Impact of scaffoldin mechanostability on cellulosomal activity. Galera-Prat A, Vera AM, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. Biomater Sci; 2020 Jul 07; 8(13):3601-3610. PubMed ID: 32232253 [Abstract] [Full Text] [Related]
12. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR. J Ind Microbiol Biotechnol; 2017 Jun 07; 44(6):825-834. PubMed ID: 28181082 [Abstract] [Full Text] [Related]
13. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou J, Bayer EA. BMC Genomics; 2012 May 30; 13():210. PubMed ID: 22646801 [Abstract] [Full Text] [Related]
14. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency. Setter-Lamed E, Moraïs S, Stern J, Lamed R, Bayer EA. Biotechnol J; 2017 Oct 30; 12(10):. PubMed ID: 28901714 [Abstract] [Full Text] [Related]
15. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Osiro KO, de Camargo BR, Satomi R, Hamann PR, Silva JP, de Sousa MV, Quirino BF, Aquino EN, Felix CR, Murad AM, Noronha EF. Enzyme Microb Technol; 2017 Feb 30; 97():43-54. PubMed ID: 28010772 [Abstract] [Full Text] [Related]
16. The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Hong W, Zhang J, Feng Y, Mohr G, Lambowitz AM, Cui GZ, Liu YJ, Cui Q. Biotechnol Biofuels; 2014 Feb 30; 7():80. PubMed ID: 24955112 [Abstract] [Full Text] [Related]
17. Intein-mediated assembly of tunable scaffoldins for facile synthesis of designer cellulosomes. Han Z, Su WW. Appl Microbiol Biotechnol; 2018 Feb 30; 102(3):1331-1342. PubMed ID: 29275429 [Abstract] [Full Text] [Related]
18. Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum. Chen C, Qi K, Chi F, Song X, Feng Y, Cui Q, Liu YJ. Int J Biol Macromol; 2022 May 15; 207():784-790. PubMed ID: 35351552 [Abstract] [Full Text] [Related]
19. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Gefen G, Anbar M, Morag E, Lamed R, Bayer EA. Proc Natl Acad Sci U S A; 2012 Jun 26; 109(26):10298-303. PubMed ID: 22689961 [Abstract] [Full Text] [Related]
20. In vitro assembly and cellulolytic activity of a β-glucosidase-integrated cellulosome complex. Hirano K, Saito T, Shinoda S, Haruki M, Hirano N. FEMS Microbiol Lett; 2019 Sep 01; 366(17):. PubMed ID: 31584652 [Abstract] [Full Text] [Related] Page: [Next] [New Search]