These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


619 related items for PubMed ID: 28942523

  • 1. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress.
    Kandoi D, Mohanty S, Tripathy BC.
    Protoplasma; 2018 Mar; 255(2):547-563. PubMed ID: 28942523
    [Abstract] [Full Text] [Related]

  • 2. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana.
    Kandoi D, Tripathy BC.
    Photosynth Res; 2023 Oct; 158(1):57-76. PubMed ID: 37561272
    [Abstract] [Full Text] [Related]

  • 3. Adaptation responses in C4 photosynthesis of maize under salinity.
    Omoto E, Taniguchi M, Miyake H.
    J Plant Physiol; 2012 Mar 15; 169(5):469-77. PubMed ID: 22209164
    [Abstract] [Full Text] [Related]

  • 4. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.
    Guo Y, Song Y, Zheng H, Zhang Y, Guo J, Sui N.
    J Agric Food Chem; 2018 Jun 20; 66(24):5992-6002. PubMed ID: 29847118
    [Abstract] [Full Text] [Related]

  • 5. Response of transgenic Arabidopsis expressing maize C4 photosynthetic enzyme genes to high light.
    Zhang Q, Qi X, Xu W, Li Y, Zhang Y, Peng C, Fang Y.
    Plant Signal Behav; 2021 Apr 03; 16(4):1885894. PubMed ID: 33566717
    [Abstract] [Full Text] [Related]

  • 6. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.
    Kandoi D, Mohanty S, Govindjee, Tripathy BC.
    Photosynth Res; 2016 Dec 03; 130(1-3):47-72. PubMed ID: 26897549
    [Abstract] [Full Text] [Related]

  • 7. Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
    Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R.
    J Exp Bot; 2012 Feb 03; 63(3):1445-59. PubMed ID: 22140244
    [Abstract] [Full Text] [Related]

  • 8. Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis.
    Beeler S, Liu HC, Stadler M, Schreier T, Eicke S, Lue WL, Truernit E, Zeeman SC, Chen J, Kötting O.
    Plant Physiol; 2014 Mar 03; 164(3):1175-90. PubMed ID: 24453164
    [Abstract] [Full Text] [Related]

  • 9. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought.
    Liu L, Hu X, Song J, Zong X, Li D, Li D.
    J Plant Physiol; 2009 Mar 15; 166(5):531-42. PubMed ID: 18930563
    [Abstract] [Full Text] [Related]

  • 10. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.
    Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R.
    Physiol Plant; 2008 Jul 15; 133(3):584-98. PubMed ID: 18494733
    [Abstract] [Full Text] [Related]

  • 11. A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis.
    Cheng Y, Long M.
    Biotechnol Lett; 2007 Jul 15; 29(7):1129-34. PubMed ID: 17516134
    [Abstract] [Full Text] [Related]

  • 12. Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis.
    Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A.
    Philos Trans R Soc Lond B Biol Sci; 2014 Apr 19; 369(1640):20130228. PubMed ID: 24591715
    [Abstract] [Full Text] [Related]

  • 13. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.
    Vishwakarma A, Bashyam L, Senthilkumaran B, Scheibe R, Padmasree K.
    Plant Physiol Biochem; 2014 Aug 19; 81():44-53. PubMed ID: 24560882
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance.
    Muñiz García MN, Cortelezzi JI, Fumagalli M, Capiati DA.
    Plant Mol Biol; 2018 Sep 19; 98(1-2):137-152. PubMed ID: 30143991
    [Abstract] [Full Text] [Related]

  • 16. The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress.
    Ambrosone A, Batelli G, Nurcato R, Aurilia V, Punzo P, Bangarusamy DK, Ruberti I, Sassi M, Leone A, Costa A, Grillo S.
    Plant Physiol; 2015 May 19; 168(1):292-306. PubMed ID: 25783413
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Differences in photosynthetic responses of NADP-ME type C4 species to high light.
    Romanowska E, Buczyńska A, Wasilewska W, Krupnik T, Drożak A, Rogowski P, Parys E, Zienkiewicz M.
    Planta; 2017 Mar 19; 245(3):641-657. PubMed ID: 27990574
    [Abstract] [Full Text] [Related]

  • 19. Characterization and functional analysis of a B3 domain factor from Zea mays.
    Liu Y, Yuan J, Ma H, Song J, Wang L, Weng Q.
    J Appl Genet; 2015 Nov 19; 56(4):427-438. PubMed ID: 25953393
    [Abstract] [Full Text] [Related]

  • 20. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
    Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C.
    J Plant Physiol; 2015 Feb 01; 174():5-15. PubMed ID: 25462961
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.