These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH. Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():525-535. PubMed ID: 28254327 [Abstract] [Full Text] [Related]
3. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Rezaei A, Mohammadi MR. Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):390-6. PubMed ID: 25428086 [Abstract] [Full Text] [Related]
4. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT, Min YK, Lee BT. J Biomater Sci Polym Ed; 2013 Jan 01; 24(5):520-38. PubMed ID: 23565865 [Abstract] [Full Text] [Related]
5. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
6. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H, Nokhbatolfoghahaei H, Farzad-Mohajeri S, Dehghan MM, Farajpour H, Aminianfar H, Bakhtiari Z, Jabbari Fakhr M, Hosseinzadeh S, Khojasteh A. J Biomed Mater Res A; 2023 Mar 01; 111(3):322-339. PubMed ID: 36334300 [Abstract] [Full Text] [Related]
7. Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering. Aragon J, Navascues N, Mendoza G, Irusta S. Int J Pharm; 2017 Jun 15; 525(1):112-122. PubMed ID: 28412451 [Abstract] [Full Text] [Related]
8. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B. J Mater Sci Mater Med; 2019 Apr 22; 30(5):51. PubMed ID: 31011810 [Abstract] [Full Text] [Related]
9. Bio-corrosion behavior and mechanical characteristics of magnesium-titania-hydroxyapatite nanocomposites coated by magnesium-oxide flakes and silicon for use as resorbable bone fixation material. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, Haider W, Noshadi I. J Mech Behav Biomed Mater; 2018 Jan 22; 77():360-374. PubMed ID: 28985616 [Abstract] [Full Text] [Related]
11. Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to in vitro biomechanical and in vivo biocompatibility evaluation. Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Biomed Mater; 2019 Jul 01; 14(4):045020. PubMed ID: 30952154 [Abstract] [Full Text] [Related]
12. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM. J Biomater Sci Polym Ed; 2014 Jul 01; 25(16):1856-74. PubMed ID: 25178801 [Abstract] [Full Text] [Related]
13. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Pedram Rad Z, Mokhtari J, Abbasi M. Int J Biol Macromol; 2019 Aug 15; 135():530-543. PubMed ID: 31152839 [Abstract] [Full Text] [Related]
14. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. Sahmani S, Saber-Samandari S, Khandan A, Aghdam MM. J Mech Behav Biomed Mater; 2019 Jul 15; 95():76-88. PubMed ID: 30954917 [Abstract] [Full Text] [Related]
15. Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering. García G, Moreno-Serna V, Saavedra M, Cordoba A, Canales D, Alfaro A, Guzmán-Soria A, Orihuela P, Zapata S, Grande-Tovar CD, Valencia-Llano CH, Zapata PA. Int J Biol Macromol; 2024 Jul 15; 273(Pt 1):132891. PubMed ID: 38848852 [Abstract] [Full Text] [Related]
16. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Keivani F, Shokrollahi P, Zandi M, Irani S, F Shokrolahi, Khorasani SC. Mater Sci Eng C Mater Biol Appl; 2016 Nov 01; 68():78-88. PubMed ID: 27523999 [Abstract] [Full Text] [Related]
17. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Hickey DJ, Ercan B, Sun L, Webster TJ. Acta Biomater; 2015 Mar 01; 14():175-84. PubMed ID: 25523875 [Abstract] [Full Text] [Related]
18. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. Elkhouly H, Mamdouh W, El-Korashy DI. J Mater Sci Mater Med; 2021 Aug 28; 32(9):111. PubMed ID: 34453628 [Abstract] [Full Text] [Related]
19. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering. Münchow EA, Pankajakshan D, Albuquerque MT, Kamocki K, Piva E, Gregory RL, Bottino MC. Clin Oral Investig; 2016 Nov 28; 20(8):1921-1933. PubMed ID: 26612403 [Abstract] [Full Text] [Related]
20. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Jaiswal AK, Chhabra H, Soni VP, Bellare JR. Mater Sci Eng C Mater Biol Appl; 2013 May 01; 33(4):2376-85. PubMed ID: 23498272 [Abstract] [Full Text] [Related] Page: [Next] [New Search]