These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 28946071

  • 1. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring.
    Martín-Betancor K, Durand MJ, Thouand G, Leganés F, Fernández-Piñas F, Rodea-Palomares I.
    Chemosphere; 2017 Dec; 189():373-381. PubMed ID: 28946071
    [Abstract] [Full Text] [Related]

  • 2. A sensitive and high throughput bacterial luminescence assay for assessing aquatic toxicity--the BLT-Screen.
    van de Merwe JP, Leusch FD.
    Environ Sci Process Impacts; 2015 May; 17(5):947-55. PubMed ID: 25845535
    [Abstract] [Full Text] [Related]

  • 3. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor.
    Camanzi L, Bolelli L, Maiolini E, Girotti S, Matteuzzi D.
    Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881
    [Abstract] [Full Text] [Related]

  • 4. Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri.
    Mirjani M, Soleimani M, Salari V.
    Ecotoxicol Environ Saf; 2021 Jan 01; 207():111554. PubMed ID: 33254411
    [Abstract] [Full Text] [Related]

  • 5. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method.
    Ranjitha P, Karthy ES.
    J Environ Sci Eng; 2012 Jan 01; 54(1):43-9. PubMed ID: 23741856
    [Abstract] [Full Text] [Related]

  • 6. Analysis of river water by bioluminescent biotests.
    Kuznetsov AM, Rodicheva EK, Medvedeva SE.
    Luminescence; 1999 Jan 01; 14(5):263-5. PubMed ID: 10512990
    [Abstract] [Full Text] [Related]

  • 7. A DNA-based assay for toxic chemicals in wastewater.
    Foreman AL, Phillips L, Kanellis VG, Hammoudeh D, Naumann C, Wong H, Chisari R, Hibbert DB, Lee GS, Patra R, Julli M, Chapman J, Cooke AR, dos Remedios CG.
    Environ Toxicol Chem; 2011 Aug 01; 30(8):1810-8. PubMed ID: 21560144
    [Abstract] [Full Text] [Related]

  • 8. [The luminescent bacteria test with personally cultured and freeze dried bacteria].
    Steinhäuser KG.
    Schriftenr Ver Wasser Boden Lufthyg; 1992 Aug 01; 89():633-52. PubMed ID: 1307826
    [No Abstract] [Full Text] [Related]

  • 9. A novel continuous toxicity test system using a luminously modified freshwater bacterium.
    Cho JC, Park KJ, Ihm HS, Park JE, Kim SY, Kang I, Lee KH, Jahng D, Lee DH, Kim SJ.
    Biosens Bioelectron; 2004 Sep 15; 20(2):338-44. PubMed ID: 15308239
    [Abstract] [Full Text] [Related]

  • 10. Towards a multi-bioassay-based index for toxicity assessment of fluvial waters.
    Pandey LK, Lavoie I, Morin S, Depuydt S, Lyu J, Lee H, Jung J, Yeom DH, Han T, Park J.
    Environ Monit Assess; 2019 Jan 28; 191(2):112. PubMed ID: 30693376
    [Abstract] [Full Text] [Related]

  • 11. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics.
    van der Grinten E, Pikkemaat MG, van den Brandhof EJ, Stroomberg GJ, Kraak MH.
    Chemosphere; 2010 Jun 28; 80(1):1-6. PubMed ID: 20430416
    [Abstract] [Full Text] [Related]

  • 12. Design of a toxicity biosensor based on Aliivibrio fischeri entrapped in a disposable card.
    Jouanneau S, Durand-Thouand MJ, Thouand G.
    Environ Sci Pollut Res Int; 2016 Mar 28; 23(5):4340-5. PubMed ID: 26162438
    [Abstract] [Full Text] [Related]

  • 13. Appraising freeze-drying for storage of bacteria and their ready access in a rapid toxicity assessment assay.
    Wenfeng S, Gooneratne R, Glithero N, Weld RJ, Pasco N.
    Appl Microbiol Biotechnol; 2013 Dec 28; 97(23):10189-98. PubMed ID: 23377787
    [Abstract] [Full Text] [Related]

  • 14. Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil).
    Sotero-Santos RB, Silva CR, Verani NF, Nonaka KO, Rocha O.
    Ecotoxicol Environ Saf; 2006 Jun 28; 64(2):163-70. PubMed ID: 15993489
    [Abstract] [Full Text] [Related]

  • 15. A novel and sensitive test for rapid determination of water toxicity.
    Ulitzur S, Lahav T, Ulitzur N.
    Environ Toxicol; 2002 Jun 28; 17(3):291-6. PubMed ID: 12112638
    [Abstract] [Full Text] [Related]

  • 16. Rapid assessment of heavy metal toxicity using bioluminescent bacteria Photobacterium leiognathi strain GoMGm1.
    Muneeswaran T, Kalyanaraman N, Vennila T, Rajesh Kannan M, Ramakritinan CM.
    Environ Monit Assess; 2021 Feb 03; 193(3):109. PubMed ID: 33537887
    [Abstract] [Full Text] [Related]

  • 17. Acute toxicity of arsenic to Aliivibrio fischeri (Microtox bioassay) as influenced by potential competitive-protective agents.
    Rubinos DA, Calvo V, Iglesias L, Barral MT.
    Environ Sci Pollut Res Int; 2014 Feb 03; 21(14):8631-44. PubMed ID: 24705848
    [Abstract] [Full Text] [Related]

  • 18. Freeze-drying as suitable method to achieve ready-to-use yeast biosensors for androgenic and estrogenic compounds.
    Jarque S, Bittner M, Hilscherová K.
    Chemosphere; 2016 Apr 03; 148():204-10. PubMed ID: 26807940
    [Abstract] [Full Text] [Related]

  • 19. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH, Gu MB.
    Biosens Bioelectron; 2002 May 03; 17(5):433-40. PubMed ID: 11888734
    [Abstract] [Full Text] [Related]

  • 20. Effect of humic substances on toxicity of inorganic oxidizer bioluminescent monitoring.
    Tarasova AS, Stom DI, Kudryasheva NS.
    Environ Toxicol Chem; 2011 May 03; 30(5):1013-7. PubMed ID: 21309025
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.