These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 28950560
1. Quantum thermodynamic cycle with quantum phase transition. Ma YH, Su SH, Sun CP. Phys Rev E; 2017 Aug; 96(2-1):022143. PubMed ID: 28950560 [Abstract] [Full Text] [Related]
2. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. Bao J, Liu YH, Guo B. J Phys Condens Matter; 2021 Sep 27; 33(49):. PubMed ID: 34517354 [Abstract] [Full Text] [Related]
3. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models. Gonzalez D, Gutiérrez-Ruiz D, Vergara JD. Phys Rev E; 2021 Jul 27; 104(1-1):014113. PubMed ID: 34412288 [Abstract] [Full Text] [Related]
4. Localization measures of parity adapted U(D)-spin coherent states applied to the phase space analysis of the D-level Lipkin-Meshkov-Glick model. Mayorgas A, Guerrero J, Calixto M. Phys Rev E; 2023 Aug 27; 108(2-1):024107. PubMed ID: 37723708 [Abstract] [Full Text] [Related]
5. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon. Cai CY, Dong H, Sun CP. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar 27; 85(3 Pt 1):031114. PubMed ID: 22587045 [Abstract] [Full Text] [Related]
6. Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models. Calixto M, Mayorgas A, Guerrero J. Phys Rev E; 2021 Jan 27; 103(1-1):012116. PubMed ID: 33601600 [Abstract] [Full Text] [Related]
7. Collective performance of a finite-time quantum Otto cycle. Kloc M, Cejnar P, Schaller G. Phys Rev E; 2019 Oct 27; 100(4-1):042126. PubMed ID: 31771028 [Abstract] [Full Text] [Related]
8. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects. Khalouf-Rivera J, Gamito J, Pérez-Bernal F, Arias JM, Pérez-Fernández P. Phys Rev E; 2023 Jun 27; 107(6-1):064134. PubMed ID: 37464676 [Abstract] [Full Text] [Related]
9. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle. Kennedy IR, Hodzic M. Entropy (Basel); 2021 Jul 05; 23(7):. PubMed ID: 34356401 [Abstract] [Full Text] [Related]
10. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY, Chen B, Liu J. Phys Rev E; 2018 Feb 05; 97(2-1):022130. PubMed ID: 29548214 [Abstract] [Full Text] [Related]
11. Dynamical Critical Scaling of Long-Range Interacting Quantum Magnets. Defenu N, Enss T, Kastner M, Morigi G. Phys Rev Lett; 2018 Dec 14; 121(24):240403. PubMed ID: 30608754 [Abstract] [Full Text] [Related]
12. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. Koyanagi S, Tanimura Y. J Chem Phys; 2022 Aug 28; 157(8):084110. PubMed ID: 36050026 [Abstract] [Full Text] [Related]
13. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model. Kopylov W, Schaller G, Brandes T. Phys Rev E; 2017 Jul 28; 96(1-1):012153. PubMed ID: 29347272 [Abstract] [Full Text] [Related]
14. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L, Meng Z, Ge Y, Wu F. Entropy (Basel); 2021 Apr 27; 23(5):. PubMed ID: 33925622 [Abstract] [Full Text] [Related]
15. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R, Wang J, He J, Ma Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 27; 86(2 Pt 1):021133. PubMed ID: 23005748 [Abstract] [Full Text] [Related]
16. Finite-power performance of quantum heat engines in linear response. Liu Q, He J, Ma Y, Wang J. Phys Rev E; 2019 Jul 27; 100(1-1):012105. PubMed ID: 31499858 [Abstract] [Full Text] [Related]
17. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times. Purkait C, Biswas A. Phys Rev E; 2023 May 27; 107(5-1):054110. PubMed ID: 37329072 [Abstract] [Full Text] [Related]
18. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects. Gamito J, Khalouf-Rivera J, Arias JM, Pérez-Fernández P, Pérez-Bernal F. Phys Rev E; 2022 Oct 27; 106(4-1):044125. PubMed ID: 36397542 [Abstract] [Full Text] [Related]
19. Non-Markovianity of a Central Spin Interacting with a Lipkin-Meshkov-Glick Bath via a Conditional Past-Future Correlation. Han L, Zou J, Li H, Shao B. Entropy (Basel); 2020 Aug 15; 22(8):. PubMed ID: 33286664 [Abstract] [Full Text] [Related]
20. Quantum phase transitions in networks of Lipkin-Meshkov-Glick models. Sorokin AV, Bastidas VM, Brandes T. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct 15; 90(4):042141. PubMed ID: 25375472 [Abstract] [Full Text] [Related] Page: [Next] [New Search]