These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1052 related items for PubMed ID: 28952024

  • 1. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.
    Yang X, Tan L, He R, Fu G, Ye J, Liu Q, Wang G.
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26545-26561. PubMed ID: 28952024
    [Abstract] [Full Text] [Related]

  • 2. Impacts of climate change on TN load and its control in a River Basin with complex pollution sources.
    Yang X, Warren R, He Y, Ye J, Li Q, Wang G.
    Sci Total Environ; 2018 Feb 15; 615():1155-1163. PubMed ID: 29751421
    [Abstract] [Full Text] [Related]

  • 3. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources.
    Yang X, Liu Q, Fu G, He Y, Luo X, Zheng Z.
    Water Res; 2016 May 01; 94():187-199. PubMed ID: 26945962
    [Abstract] [Full Text] [Related]

  • 4. Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin.
    Bi W, Weng B, Yuan Z, Ye M, Zhang C, Zhao Y, Yan D, Xu T.
    Int J Environ Res Public Health; 2018 Aug 11; 15(8):. PubMed ID: 30103482
    [Abstract] [Full Text] [Related]

  • 5. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
    Deng OP, Sun SY, Lü J.
    Huan Jing Ke Xue; 2013 Apr 11; 34(4):1284-90. PubMed ID: 23798104
    [Abstract] [Full Text] [Related]

  • 6. Evolution of Drought⁻Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin.
    Bi W, Weng B, Yuan Z, Yang Y, Xu T, Yan D, Ma J.
    Int J Environ Res Public Health; 2019 Feb 26; 16(5):. PubMed ID: 30813626
    [Abstract] [Full Text] [Related]

  • 7. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture.
    Serpa D, Nunes JP, Keizer JJ, Abrantes N.
    Environ Pollut; 2017 May 26; 224():454-465. PubMed ID: 28238575
    [Abstract] [Full Text] [Related]

  • 8. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F, Leccia-Phelpin O, Lescot JM, Minette S, Miralles A, Barberis D, Scordia C, Kuentz-Simonet V, Tonneau JP.
    Environ Sci Pollut Res Int; 2017 Mar 26; 24(8):6923-6950. PubMed ID: 27726081
    [Abstract] [Full Text] [Related]

  • 9. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin.
    El-Khoury A, Seidou O, Lapen DR, Que Z, Mohammadian M, Sunohara M, Bahram D.
    J Environ Manage; 2015 Mar 15; 151():76-86. PubMed ID: 25536300
    [Abstract] [Full Text] [Related]

  • 10. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK.
    Sci Total Environ; 2006 Jul 15; 365(1-3):223-37. PubMed ID: 16647104
    [Abstract] [Full Text] [Related]

  • 11. Short-term climate change influence on surface water quality impacts from agricultural activities.
    Avcı BC, Kesgin E, Atam M, Tan RI, Abdelkader M.
    Environ Sci Pollut Res Int; 2023 Aug 15; 30(38):89581-89596. PubMed ID: 37454384
    [Abstract] [Full Text] [Related]

  • 12. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.
    Wu L, Gao JE, Ma XY, Li D.
    Environ Sci Pollut Res Int; 2015 Jul 15; 22(14):10647-60. PubMed ID: 25752629
    [Abstract] [Full Text] [Related]

  • 13. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.
    Chen W, He B, Nover D, Duan W, Luo C, Zhao K, Chen W.
    Environ Sci Pollut Res Int; 2018 Jan 15; 25(3):2756-2773. PubMed ID: 29139077
    [Abstract] [Full Text] [Related]

  • 14. Modeling the non-point source pollution risks by combing pollutant sources, precipitation, and landscape structure.
    Cheng X, Chen L, Sun R.
    Environ Sci Pollut Res Int; 2019 Apr 15; 26(12):11856-11863. PubMed ID: 30820916
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region.
    Shen Z, Qiu J, Hong Q, Chen L.
    Sci Total Environ; 2014 Sep 15; 493():138-46. PubMed ID: 24946028
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M, Koch M.
    Sci Total Environ; 2018 Jul 15; 630():502-516. PubMed ID: 29486443
    [Abstract] [Full Text] [Related]

  • 19. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].
    Zhou L, Xu JG, Sun DQ, Ni TH.
    Huan Jing Ke Xue; 2013 Feb 15; 34(2):547-54. PubMed ID: 23668121
    [Abstract] [Full Text] [Related]

  • 20. Improvements in the InVEST water purification model for detecting spatio-temporal changesintotal nitrogen and total phosphorus discharges in the Huai river watershed, China.
    Lu Y, Qin F.
    J Environ Manage; 2024 Aug 15; 366():121918. PubMed ID: 39033624
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.