These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 2897249

  • 21. Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene.
    Messenguy F, Vierendeels F, Piérard A, Delbecq P.
    Curr Genet; 2002 Jul; 41(4):224-31. PubMed ID: 12172963
    [Abstract] [Full Text] [Related]

  • 22. Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets.
    Morin A, Huysveld N, Braun F, Dimova D, Sakanyan V, Charlier D.
    J Mol Biol; 2003 Sep 19; 332(3):537-53. PubMed ID: 12963366
    [Abstract] [Full Text] [Related]

  • 23. Sequence for human argininosuccinate synthetase cDNA.
    Bock HG, Su TS, O'Brien WE, Beaudet AL.
    Nucleic Acids Res; 1983 Sep 24; 11(18):6505-12. PubMed ID: 6194510
    [Abstract] [Full Text] [Related]

  • 24. Heme control region of the catalase T gene of the yeast Saccharomyces cerevisiae.
    Spevak W, Hartig A, Meindl P, Ruis H.
    Mol Gen Genet; 1986 Apr 24; 203(1):73-8. PubMed ID: 2423850
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression.
    Charlier D, Roovers M, Van Vliet F, Boyen A, Cunin R, Nakamura Y, Glansdorff N, Piérard A.
    J Mol Biol; 1992 Jul 20; 226(2):367-86. PubMed ID: 1640456
    [Abstract] [Full Text] [Related]

  • 28. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y, Sun Y, Huysveld N, Gigot D, Glansdorff N, Charlier D.
    J Mol Biol; 2003 Feb 14; 326(2):353-69. PubMed ID: 12559906
    [Abstract] [Full Text] [Related]

  • 29. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids.
    Steinle A, Bergander K, Steinbüchel A.
    Appl Environ Microbiol; 2009 Jun 14; 75(11):3437-46. PubMed ID: 19346356
    [Abstract] [Full Text] [Related]

  • 30. Cloning and characterization of the CYC8 gene mediating glucose repression in yeast.
    Trumbly RJ.
    Gene; 1988 Dec 15; 73(1):97-111. PubMed ID: 2854095
    [Abstract] [Full Text] [Related]

  • 31. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T, Sakuno T, Furukawa T, Kaneko Y, Harashima S.
    J Biochem; 2000 Oct 15; 128(4):575-84. PubMed ID: 11011139
    [Abstract] [Full Text] [Related]

  • 32. Tripartite structure of the Saccharomyces cerevisiae arginase (CAR1) gene inducer-responsive upstream activation sequence.
    Viljoen M, Kovari LZ, Kovari IA, Park HD, van Vuuren HJ, Cooper TG.
    J Bacteriol; 1992 Nov 15; 174(21):6831-9. PubMed ID: 1400233
    [Abstract] [Full Text] [Related]

  • 33. Nucleotide sequence of yeast gene CP A1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Homology of the deduced amino acid sequence to other glutamine amidotransferases.
    Werner M, Feller A, Piérard A.
    Eur J Biochem; 1985 Jan 15; 146(2):371-81. PubMed ID: 3881260
    [Abstract] [Full Text] [Related]

  • 34. Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae.
    Cooper TG, Rai R, Yoo HS.
    Mol Cell Biol; 1989 Dec 15; 9(12):5440-4. PubMed ID: 2511434
    [Abstract] [Full Text] [Related]

  • 35. Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein.
    Fantino E, Marguet D, Lauquin GJ.
    Mol Gen Genet; 1992 Dec 15; 236(1):65-75. PubMed ID: 1494352
    [Abstract] [Full Text] [Related]

  • 36. Analysis of deletions at the human argininosuccinate synthetase locus.
    Jackson MJ, Kobayashi K, Beaudet AL, O'Brien WE.
    Mol Biol Med; 1989 Apr 15; 6(2):179-86. PubMed ID: 2615645
    [Abstract] [Full Text] [Related]

  • 37. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression.
    Jauniaux JC, Grenson M.
    Eur J Biochem; 1990 May 31; 190(1):39-44. PubMed ID: 2194797
    [Abstract] [Full Text] [Related]

  • 38. Mcm1p binding sites in the ARG1 promoter positively regulate ARG1 transcription and S. cerevisiae growth in the absence of arginine and Gcn4p.
    Hong S, Yoon S.
    Amino Acids; 2011 Feb 31; 40(2):623-31. PubMed ID: 20625780
    [Abstract] [Full Text] [Related]

  • 39. The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue.
    Vandenbol M, Jauniaux JC, Grenson M.
    Mol Gen Genet; 1990 Jul 31; 222(2-3):393-9. PubMed ID: 2125693
    [Abstract] [Full Text] [Related]

  • 40. Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae.
    Einerhand AW, Voorn-Brouwer TM, Erdmann R, Kunau WH, Tabak HF.
    Eur J Biochem; 1991 Aug 15; 200(1):113-22. PubMed ID: 1715273
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.