These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Lo J, Zheng T, Hon S, Olson DG, Lynd LR. J Bacteriol; 2015 Apr 04; 197(8):1386-93. PubMed ID: 25666131 [Abstract] [Full Text] [Related]
3. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Cui J, Olson DG, Lynd LR. Metab Eng; 2019 Jan 04; 51():32-42. PubMed ID: 30218716 [Abstract] [Full Text] [Related]
4. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production. Kannuchamy S, Mukund N, Saleena LM. BMC Biotechnol; 2016 May 11; 16 Suppl 1(Suppl 1):34. PubMed ID: 27213504 [Abstract] [Full Text] [Related]
5. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR. J Bacteriol; 2015 Aug 01; 197(15):2610-9. PubMed ID: 26013492 [Abstract] [Full Text] [Related]
6. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR. Metab Eng; 2017 Jul 01; 42():175-184. PubMed ID: 28663138 [Abstract] [Full Text] [Related]
7. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Beri D, Olson DG, Holwerda EK, Lynd LR. FEMS Microbiol Lett; 2016 Jun 01; 363(11):. PubMed ID: 27190292 [Abstract] [Full Text] [Related]
8. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Wang Z, Chen M, Xu Y, Li S, Lu W, Ping S, Zhang W, Lin M. Biotechnol Lett; 2008 Apr 01; 30(4):657-63. PubMed ID: 18034308 [Abstract] [Full Text] [Related]
9. Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. Nichols NN, Dien BS, Bothast RJ. J Ind Microbiol Biotechnol; 2003 May 01; 30(5):315-21. PubMed ID: 12750944 [Abstract] [Full Text] [Related]
10. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG. Biotechnol Biofuels; 2018 May 01; 11():242. PubMed ID: 30202437 [Abstract] [Full Text] [Related]
11. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans. Tolonen AC, Zuroff TR, Ramya M, Boutard M, Cerisy T, Curtis WR. Appl Environ Microbiol; 2015 Aug 15; 81(16):5440-8. PubMed ID: 26048945 [Abstract] [Full Text] [Related]
12. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov 15; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
13. A new Zymomonas mobilis platform strain for the efficient production of chemicals. Frohwitter J, Behrendt G, Klamt S, Bettenbrock K. Microb Cell Fact; 2024 May 22; 23(1):143. PubMed ID: 38773442 [Abstract] [Full Text] [Related]
14. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. Ghosh IN, Landick R. ACS Synth Biol; 2016 Dec 16; 5(12):1519-1534. PubMed ID: 27404024 [Abstract] [Full Text] [Related]
15. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans. Lee JS, Chi WJ, Hong SK, Yang JW, Chang YK. Appl Microbiol Biotechnol; 2013 Jul 16; 97(13):6089-97. PubMed ID: 23681589 [Abstract] [Full Text] [Related]
16. Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis. Arfman N, Worrell V, Ingram LO. J Bacteriol; 1992 Nov 16; 174(22):7370-8. PubMed ID: 1429459 [Abstract] [Full Text] [Related]
17. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli. Lewicka AJ, Lyczakowski JJ, Blackhurst G, Pashkuleva C, Rothschild-Mancinelli K, Tautvaišas D, Thornton H, Villanueva H, Xiao W, Slikas J, Horsfall L, Elfick A, French C. ACS Synth Biol; 2014 Dec 19; 3(12):976-8. PubMed ID: 25524103 [Abstract] [Full Text] [Related]
18. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC. Appl Environ Microbiol; 2011 Dec 19; 77(23):8288-94. PubMed ID: 21965408 [Abstract] [Full Text] [Related]
19. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Holwerda EK, Zhou J, Hon S, Stevenson DM, Amador-Noguez D, Lynd LR, van Dijken JP. Appl Environ Microbiol; 2020 Nov 10; 86(23):. PubMed ID: 32978139 [Abstract] [Full Text] [Related]
20. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb 10; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related] Page: [Next] [New Search]