These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 28978747

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Experimental verification of dynamic soaring in albatrosses.
    Sachs G, Traugott J, Nesterova AP, Bonadonna F.
    J Exp Biol; 2013 Nov 15; 216(Pt 22):4222-32. PubMed ID: 24172888
    [Abstract] [Full Text] [Related]

  • 4. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL, Wakefield ED, Phillips RA.
    Mov Ecol; 2018 Nov 15; 6():3. PubMed ID: 29556395
    [Abstract] [Full Text] [Related]

  • 5. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring.
    Pokhrel S, Eisa SA.
    Bioinspir Biomim; 2022 Dec 13; 18(1):. PubMed ID: 36594630
    [Abstract] [Full Text] [Related]

  • 6. Observations and models of across-wind flight speed of the wandering albatross.
    Richardson PL, Wakefield ED.
    R Soc Open Sci; 2022 Nov 13; 9(11):211364. PubMed ID: 36465680
    [Abstract] [Full Text] [Related]

  • 7. On the feasibility of the Rayleigh cycle for dynamic soaring trajectories.
    Alexandre D, Marino L, Marta A, Graziani G, Piva R.
    PLoS One; 2020 Nov 13; 15(3):e0229746. PubMed ID: 32126133
    [Abstract] [Full Text] [Related]

  • 8. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH, Guilford T, Meade J, Geraldes P, Ramos JA, Garthe S.
    Zoology (Jena); 2010 Jan 13; 113(1):47-56. PubMed ID: 20060697
    [Abstract] [Full Text] [Related]

  • 9. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y, Weimerskirch H, Fukaya K, Yoda K, Naruoka M, Sato K.
    Proc Natl Acad Sci U S A; 2024 Jun 04; 121(23):e2312851121. PubMed ID: 38771864
    [Abstract] [Full Text] [Related]

  • 10. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.
    Sachs G, Traugott J, Nesterova AP, Dell'Omo G, Kümmeth F, Heidrich W, Vyssotski AL, Bonadonna F.
    PLoS One; 2012 Jun 04; 7(9):e41449. PubMed ID: 22957014
    [Abstract] [Full Text] [Related]

  • 11. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.
    Yonehara Y, Goto Y, Yoda K, Watanuki Y, Young LC, Weimerskirch H, Bost CA, Sato K.
    Proc Natl Acad Sci U S A; 2016 Aug 09; 113(32):9039-44. PubMed ID: 27457932
    [Abstract] [Full Text] [Related]

  • 12. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA, Joo R, Weimerskirch H, Phillips RA, den Ouden O, Basille M, Clusella-Trullas S, Assink JD, Patrick SC.
    J Anim Ecol; 2020 Aug 09; 89(8):1811-1823. PubMed ID: 32557603
    [Abstract] [Full Text] [Related]

  • 13. Opportunistic soaring by birds suggests new opportunities for atmospheric energy harvesting by flying robots.
    Mohamed A, Taylor GK, Watkins S, Windsor SP.
    J R Soc Interface; 2022 Nov 09; 19(196):20220671. PubMed ID: 36415974
    [Abstract] [Full Text] [Related]

  • 14. How did extinct giant birds and pterosaurs fly? A comprehensive modeling approach to evaluate soaring performance.
    Goto Y, Yoda K, Weimerskirch H, Sato K.
    PNAS Nexus; 2022 Mar 09; 1(1):pgac023. PubMed ID: 36712794
    [Abstract] [Full Text] [Related]

  • 15. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z, Nagy M, Leven S, Vicsek T.
    Bioinspir Biomim; 2010 Dec 09; 5(4):045003. PubMed ID: 21098957
    [Abstract] [Full Text] [Related]

  • 16. Dynamic soaring decouples dynamic body acceleration and energetics in albatrosses.
    Conners MG, Green JA, Phillips RA, Orben RA, Cui C, Djurić PM, Heywood E, Vyssotski AL, Thorne LH.
    J Exp Biol; 2024 Sep 15; 227(18):. PubMed ID: 39246116
    [Abstract] [Full Text] [Related]

  • 17. Vultures respond to challenges of near-ground thermal soaring by varying bank angle.
    Williams HJ, Duriez O, Holton MD, Dell'Omo G, Wilson RP, Shepard ELC.
    J Exp Biol; 2018 Dec 03; 221(Pt 23):. PubMed ID: 30337356
    [Abstract] [Full Text] [Related]

  • 18. Match between soaring modes of black kites and the fine-scale distribution of updrafts.
    Santos CD, Hanssen F, Muñoz AR, Onrubia A, Wikelski M, May R, Silva JP.
    Sci Rep; 2017 Jul 25; 7(1):6421. PubMed ID: 28743947
    [Abstract] [Full Text] [Related]

  • 19. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle.
    Uesaka L, Goto Y, Naruoka M, Weimerskirch H, Sato K, Sakamoto KQ.
    Elife; 2023 Oct 10; 12():. PubMed ID: 37814539
    [Abstract] [Full Text] [Related]

  • 20. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R, Shoji A, Fayet AL, Perrins CM, Guilford T, Freeman R.
    J R Soc Interface; 2017 Jul 10; 14(132):. PubMed ID: 28701505
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.