These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 28978747

  • 41. Physical limits of flight performance in the heaviest soaring bird.
    Williams HJ, Shepard ELC, Holton MD, Alarcón PAE, Wilson RP, Lambertucci SA.
    Proc Natl Acad Sci U S A; 2020 Jul 28; 117(30):17884-17890. PubMed ID: 32661147
    [Abstract] [Full Text] [Related]

  • 42. Adult vultures outperform juveniles in challenging thermal soaring conditions.
    Harel R, Horvitz N, Nathan R.
    Sci Rep; 2016 Jun 13; 6():27865. PubMed ID: 27291590
    [Abstract] [Full Text] [Related]

  • 43. Windscape and tortuosity shape the flight costs of northern gannets.
    Amélineau F, Péron C, Lescroël A, Authier M, Provost P, Grémillet D.
    J Exp Biol; 2014 Mar 15; 217(Pt 6):876-85. PubMed ID: 24622894
    [Abstract] [Full Text] [Related]

  • 44. Emulating avian orographic soaring with a small autonomous glider.
    Fisher A, Marino M, Clothier R, Watkins S, Peters L, Palmer JL.
    Bioinspir Biomim; 2015 Dec 17; 11(1):016002. PubMed ID: 26674126
    [Abstract] [Full Text] [Related]

  • 45. Wind estimation based on thermal soaring of birds.
    Weinzierl R, Bohrer G, Kranstauber B, Fiedler W, Wikelski M, Flack A.
    Ecol Evol; 2016 Dec 17; 6(24):8706-8718. PubMed ID: 28035262
    [Abstract] [Full Text] [Related]

  • 46. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.
    Duerr AE, Miller TA, Lanzone M, Brandes D, Cooper J, O'Malley K, Maisonneuve C, Tremblay J, Katzner T.
    PLoS One; 2012 Dec 17; 7(4):e35548. PubMed ID: 22558166
    [Abstract] [Full Text] [Related]

  • 47. Soaring energetics and glide performance in a moving atmosphere.
    Taylor GK, Reynolds KV, Thomas AL.
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep 26; 371(1704):. PubMed ID: 27528788
    [Abstract] [Full Text] [Related]

  • 48. Combined use of tri-axial accelerometers and GPS reveals the flexible foraging strategy of a bird in relation to weather conditions.
    Hernández-Pliego J, Rodríguez C, Dell'Omo G, Bustamante J.
    PLoS One; 2017 Sep 26; 12(6):e0177892. PubMed ID: 28591181
    [Abstract] [Full Text] [Related]

  • 49. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.
    Sapir N, Horvitz N, Wikelski M, Avissar R, Mahrer Y, Nathan R.
    Proc Biol Sci; 2011 Nov 22; 278(1723):3380-6. PubMed ID: 21471116
    [Abstract] [Full Text] [Related]

  • 50. Changes in wind pattern alter albatross distribution and life-history traits.
    Weimerskirch H, Louzao M, de Grissac S, Delord K.
    Science; 2012 Jan 13; 335(6065):211-4. PubMed ID: 22246774
    [Abstract] [Full Text] [Related]

  • 51. Soaring over open waters: horizontal winds provide lift to soaring migrants in weak thermal conditions.
    Škrábal J, Krejčí Š, Raab R, Sebastián-González E, Literák I.
    Mov Ecol; 2023 Dec 09; 11(1):76. PubMed ID: 38071360
    [Abstract] [Full Text] [Related]

  • 52. From daily movements to population distributions: weather affects competitive ability in a guild of soaring birds.
    Shepard EL, Lambertucci SA.
    J R Soc Interface; 2013 Nov 06; 10(88):20130612. PubMed ID: 24026471
    [Abstract] [Full Text] [Related]

  • 53. Optimal stopover decisions under wind influence: the effects of correlated winds.
    Weber TP, Hedenström A.
    J Theor Biol; 2000 Jul 07; 205(1):95-104. PubMed ID: 10860703
    [Abstract] [Full Text] [Related]

  • 54. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.
    Serrano FJ, Chiappe LM.
    J R Soc Interface; 2017 Jul 07; 14(132):. PubMed ID: 28724626
    [Abstract] [Full Text] [Related]

  • 55. The concept of energy height in animal locomotion: separating mechanics from physiology.
    Pennycuick CJ.
    J Theor Biol; 2003 Sep 21; 224(2):189-203. PubMed ID: 12927526
    [Abstract] [Full Text] [Related]

  • 56. Obligate vertebrate scavengers must be large soaring fliers.
    Ruxton GD, Houston DC.
    J Theor Biol; 2004 Jun 07; 228(3):431-6. PubMed ID: 15135041
    [Abstract] [Full Text] [Related]

  • 57. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N, Sapir N, Liechti F, Avissar R, Mahrer I, Nathan R.
    Ecol Lett; 2014 Jun 07; 17(6):670-9. PubMed ID: 24641086
    [Abstract] [Full Text] [Related]

  • 58. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P, Troupin D, Dinevich L, Leshem Y, Sapir N.
    Mov Ecol; 2023 Jul 27; 11(1):44. PubMed ID: 37501209
    [Abstract] [Full Text] [Related]

  • 59. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL, O'connor PM.
    Anat Rec (Hoboken); 2012 Mar 27; 295(3):386-96. PubMed ID: 22241723
    [Abstract] [Full Text] [Related]

  • 60. How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
    Duriez O, Kato A, Tromp C, Dell'Omo G, Vyssotski AL, Sarrazin F, Ropert-Coudert Y.
    PLoS One; 2014 Mar 27; 9(1):e84887. PubMed ID: 24454760
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.