These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 28982003
1. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Ma Z, Jia YG, Zhu XX. Biomacromolecules; 2017 Nov 13; 18(11):3812-3818. PubMed ID: 28982003 [Abstract] [Full Text] [Related]
2. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants. Ma Z, Zhu XX. Mol Pharm; 2018 Jun 04; 15(6):2348-2354. PubMed ID: 29733653 [Abstract] [Full Text] [Related]
3. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y. Chem Commun (Camb); 2017 Dec 19; 54(1):82-85. PubMed ID: 29211064 [Abstract] [Full Text] [Related]
4. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Ahmed M, Narain R. Biomaterials; 2012 May 19; 33(15):3990-4001. PubMed ID: 22386601 [Abstract] [Full Text] [Related]
5. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery. Wang Z, Luo T, Sheng R, Li H, Sun J, Cao A. Biomacromolecules; 2016 Jan 11; 17(1):98-110. PubMed ID: 26682643 [Abstract] [Full Text] [Related]
6. Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins. Salvadó M, Reina JJ, Rojo J, Castillón S, Boutureira O. Chemistry; 2017 Nov 07; 23(62):15790-15794. PubMed ID: 28851127 [Abstract] [Full Text] [Related]
7. pH and glucose responsive nanofibers for the reversible capture and release of lectins. Wang Y, Kotsuchibashi Y, Uto K, Ebara M, Aoyagi T, Liu Y, Narain R. Biomater Sci; 2015 Jan 07; 3(1):152-62. PubMed ID: 26214198 [Abstract] [Full Text] [Related]
8. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, Lewis AL. Biomacromolecules; 2006 Mar 07; 7(3):817-28. PubMed ID: 16529419 [Abstract] [Full Text] [Related]
9. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Suriano F, Pratt R, Tan JP, Wiradharma N, Nelson A, Yang YY, Dubois P, Hedrick JL. Biomaterials; 2010 Mar 07; 31(9):2637-45. PubMed ID: 20074794 [Abstract] [Full Text] [Related]
10. Block Copolymers Featuring Highly Photostable Photoacids Based on Vinylnaphthol: Synthesis and Self-Assembly. Wendler F, Tom JC, Sittig M, Biehl P, Dietzek B, Schacher FH. Macromol Rapid Commun; 2020 Mar 07; 41(6):e1900607. PubMed ID: 32037620 [Abstract] [Full Text] [Related]
11. Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer. Zhao C, He P, Xiao C, Gao X, Zhuang X, Chen X. J Colloid Interface Sci; 2011 Jul 15; 359(2):436-42. PubMed ID: 21531426 [Abstract] [Full Text] [Related]
12. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. Ma Z, Zhu XX. J Mater Chem B; 2019 Mar 07; 7(9):1361-1378. PubMed ID: 32255007 [Abstract] [Full Text] [Related]
13. Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers. Hu Y, Darcos V, Monge S, Li S. Int J Pharm; 2015 Aug 01; 491(1-2):152-61. PubMed ID: 26095914 [Abstract] [Full Text] [Related]
14. Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer. Mizukami K, Takakura H, Matsunaga T, Kitano H. Colloids Surf B Biointerfaces; 2008 Oct 01; 66(1):110-8. PubMed ID: 18614341 [Abstract] [Full Text] [Related]
15. Carbohydrate-based amphiphilic diblock copolymers with pyridine for the sensitive detection of protein binding. Otsuka H, Hagiwara T, Yamamoto S. J Nanosci Nanotechnol; 2014 Sep 01; 14(9):6764-73. PubMed ID: 25924328 [Abstract] [Full Text] [Related]
16. Synthesis and self-assembly of stimuli-responsive poly(2-(dimethylamino) ethyl methacrylate)-block-fullerene (PDMAEMA-b-C60) and the demicellization induced by free PDMAEMA chains. Yao ZL, Tam KC. Langmuir; 2011 Jun 07; 27(11):6668-73. PubMed ID: 21568352 [Abstract] [Full Text] [Related]
17. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization. Wang W, Lester JM, Amorosa AE, Chance DL, Mossine VV, Mawhinney TP. J Vis Exp; 2015 Jun 19; (100):e52922. PubMed ID: 26132587 [Abstract] [Full Text] [Related]
19. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release. Qiao ZY, Ji R, Huang XN, Du FS, Zhang R, Liang DH, Li ZC. Biomacromolecules; 2013 May 13; 14(5):1555-63. PubMed ID: 23570500 [Abstract] [Full Text] [Related]
20. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J, Wang H, Liu J, Deng L, Liu J, Dong A, Zhang J. Biomacromolecules; 2013 Nov 11; 14(11):3973-84. PubMed ID: 24107101 [Abstract] [Full Text] [Related] Page: [Next] [New Search]