These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 28990565
1. [Calpain as a new therapeutic target for treating spasticity after a spinal cord injury]. Plantier V, Brocard F. Med Sci (Paris); 2017; 33(6-7):629-636. PubMed ID: 28990565 [Abstract] [Full Text] [Related]
2. Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity. Plantier V, Sanchez-Brualla I, Dingu N, Brocard C, Liabeuf S, Gackière F, Brocard F. Elife; 2019 Dec 09; 8():. PubMed ID: 31815668 [Abstract] [Full Text] [Related]
3. Cleavage of Na(+) channels by calpain increases persistent Na(+) current and promotes spasticity after spinal cord injury. Brocard C, Plantier V, Boulenguez P, Liabeuf S, Bouhadfane M, Viallat-Lieutaud A, Vinay L, Brocard F. Nat Med; 2016 Apr 09; 22(4):404-11. PubMed ID: 26974309 [Abstract] [Full Text] [Related]
4. Knockdown of calpain1 in lumbar motoneurons reduces spasticity after spinal cord injury in adult rats. Kerzonkuf M, Verneuil J, Brocard C, Dingu N, Trouplin V, Ramirez Franco JJ, Bartoli M, Brocard F, Bras H. Mol Ther; 2024 Apr 03; 32(4):1096-1109. PubMed ID: 38291756 [Abstract] [Full Text] [Related]
5. Prochlorperazine Increases KCC2 Function and Reduces Spasticity after Spinal Cord Injury. Liabeuf S, Stuhl-Gourmand L, Gackière F, Mancuso R, Sanchez Brualla I, Marino P, Brocard F, Vinay L. J Neurotrauma; 2017 Dec 15; 34(24):3397-3406. PubMed ID: 28747093 [Abstract] [Full Text] [Related]
6. Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat. Malloy DC, Côté MP. Exp Neurol; 2024 Jun 15; 376():114754. PubMed ID: 38493983 [Abstract] [Full Text] [Related]
7. Furosemide Unmasks Inhibitory Dysfunction after Spinal Cord Injury in Humans: Implications for Spasticity. Klomjai W, Roche N, Lamy JC, Bede P, Giron A, Bussel B, Bensmail D, Katz R, Lackmy-Vallée A. J Neurotrauma; 2019 May 01; 36(9):1469-1477. PubMed ID: 30417726 [Abstract] [Full Text] [Related]
8. Management of spasticity after spinal cord injury: current techniques and future directions. Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Neurorehabil Neural Repair; 2010 Jan 01; 24(1):23-33. PubMed ID: 19723923 [Abstract] [Full Text] [Related]
9. Rehabilitation Decreases Spasticity by Restoring Chloride Homeostasis through the Brain-Derived Neurotrophic Factor-KCC2 Pathway after Spinal Cord Injury. Beverungen H, Klaszky SC, Klaszky M, Côté MP. J Neurotrauma; 2020 Mar 15; 37(6):846-859. PubMed ID: 31578924 [Abstract] [Full Text] [Related]
10. BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2. Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, Nakamura M, Okano H. Neurorehabil Neural Repair; 2015 Aug 15; 29(7):677-89. PubMed ID: 25527489 [Abstract] [Full Text] [Related]
11. Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury. Sadlaoud K, Khalki L, Brocard F, Vinay L, Boulenguez P, Bras H. J Chem Neuroanat; 2020 Jul 15; 106():101787. PubMed ID: 32339654 [Abstract] [Full Text] [Related]
12. The time course of serotonin 2A receptor expression after spinal transection of rats: an immunohistochemical study. Kong XY, Wienecke J, Chen M, Hultborn H, Zhang M. Neuroscience; 2011 Mar 17; 177():114-26. PubMed ID: 21211552 [Abstract] [Full Text] [Related]
14. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM. Cent Nerv Syst Trauma; 1986 Apr 17; 3(2):129-44. PubMed ID: 3490312 [Abstract] [Full Text] [Related]
15. Suppressing the excitability of spinal motoneurons by extracellularly applied electrical fields: insights from computer simulations. Elbasiouny SM, Mushahwar VK. J Appl Physiol (1985); 2007 Nov 17; 103(5):1824-36. PubMed ID: 17702836 [Abstract] [Full Text] [Related]
16. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity. Wienecke J, Westerdahl AC, Hultborn H, Kiehn O, Ryge J. J Neurophysiol; 2010 Feb 17; 103(2):761-78. PubMed ID: 19939961 [Abstract] [Full Text] [Related]
17. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L. Nat Med; 2010 Mar 17; 16(3):302-7. PubMed ID: 20190766 [Abstract] [Full Text] [Related]
18. Combination of repetitive transcranial magnetic stimulation and treadmill training reduces hyperreflexia by rebalancing motoneuron excitability in rats after spinal cord contusion. Wang S, Wang P, Yin R, Xiao M, Zhang Y, Reinhardt JD, Wang H, Xu G. Neurosci Lett; 2022 Apr 01; 775():136536. PubMed ID: 35183693 [Abstract] [Full Text] [Related]
19. PAK1 inhibition with Romidepsin attenuates H-reflex hyperexcitability after spinal cord injury. Kauer SD, Benson CA, Carrara JM, Tarafder AA, Ibrahim YH, Estacion MA, Waxman SG, Tan AM. J Physiol; 2024 Oct 01; 602(19):5061-5081. PubMed ID: 39231098 [Abstract] [Full Text] [Related]
20. Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study. Elbasiouny SM, Mushahwar VK. J Appl Physiol (1985); 2007 Jul 01; 103(1):276-86. PubMed ID: 17234800 [Abstract] [Full Text] [Related] Page: [Next] [New Search]