These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 28991782

  • 21. Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst.
    Khan I, Sadiq M, Khan I, Saeed K.
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):5140-5154. PubMed ID: 30607840
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent manganese on α-MnO2 surfaces: Mechanism and application.
    Yi H, Wang Y, Diao L, Xin Y, Chai C, Cui D, Ma D.
    J Colloid Interface Sci; 2022 Nov 15; 626():629-638. PubMed ID: 35810702
    [Abstract] [Full Text] [Related]

  • 27. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.
    Sharma A, Lee BK.
    J Environ Manage; 2016 Oct 01; 181():563-573. PubMed ID: 27423769
    [Abstract] [Full Text] [Related]

  • 28. Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes.
    Wu CH, Kuo CY, Chang CL.
    J Hazard Mater; 2008 May 30; 153(3):1052-8. PubMed ID: 17964715
    [Abstract] [Full Text] [Related]

  • 29. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell.
    Majidi MR, Shahbazi Farahani F, Hosseini M, Ahadzadeh I.
    Bioelectrochemistry; 2019 Feb 30; 125():38-45. PubMed ID: 30261369
    [Abstract] [Full Text] [Related]

  • 30. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands.
    Zhou T, Lim TT, Wu X.
    Water Res; 2011 Apr 30; 45(9):2915-24. PubMed ID: 21444101
    [Abstract] [Full Text] [Related]

  • 31. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106.
    Zhou Y, Lu H, Wang J, Zhou J, Leng X, Liu G.
    J Hazard Mater; 2018 Aug 15; 356():82-90. PubMed ID: 29843113
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.
    Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C.
    Sci Rep; 2015 May 22; 5():10632. PubMed ID: 26000975
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite.
    Song Z, Ma YL, Li CE.
    Sci Total Environ; 2019 Feb 15; 651(Pt 1):580-590. PubMed ID: 30245414
    [Abstract] [Full Text] [Related]

  • 37. Catalytic performance of graphene-bimetallic composite for heterogeneous oxidation of acid orange 7 from aqueous solution.
    Li J, Hussain A, Li D, Yang M, Xu S.
    Environ Sci Pollut Res Int; 2017 Mar 15; 24(8):7264-7273. PubMed ID: 28101711
    [Abstract] [Full Text] [Related]

  • 38. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.
    Hu P, Yan M, Wang X, Han C, He L, Wei X, Niu C, Zhao K, Tian X, Wei Q, Li Z, Mai L.
    Nano Lett; 2016 Mar 09; 16(3):1523-9. PubMed ID: 26882441
    [Abstract] [Full Text] [Related]

  • 39. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z, Shi F, Lu L.
    ACS Appl Mater Interfaces; 2012 Feb 09; 4(2):1058-64. PubMed ID: 22264121
    [Abstract] [Full Text] [Related]

  • 40. Electrocatalytical oxidation of arsenite by reduced graphene oxide via in-situ electrocatalytic generation of H2O2.
    Li X, Liu F, Zhang W, Lu H, Zhang J.
    Environ Pollut; 2019 Nov 09; 254(Pt A):112958. PubMed ID: 31377331
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.