These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
441 related items for PubMed ID: 28992091
1. Roles for IBA-derived auxin in plant development. Frick EM, Strader LC. J Exp Bot; 2018 Jan 04; 69(2):169-177. PubMed ID: 28992091 [Abstract] [Full Text] [Related]
3. Peroxisomes as a source of auxin signaling molecules. Spiess GM, Zolman BK. Subcell Biochem; 2013 Jan 04; 69():257-81. PubMed ID: 23821153 [Abstract] [Full Text] [Related]
4. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Strader LC, Culler AH, Cohen JD, Bartel B. Plant Physiol; 2010 Aug 04; 153(4):1577-86. PubMed ID: 20562230 [Abstract] [Full Text] [Related]
5. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. New Phytol; 2013 Oct 04; 200(2):473-482. PubMed ID: 23795714 [Abstract] [Full Text] [Related]
6. TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture. Michniewicz M, Ho CH, Enders TA, Floro E, Damodaran S, Gunther LK, Powers SK, Frick EM, Topp CN, Frommer WB, Strader LC. Dev Cell; 2019 Sep 09; 50(5):599-609.e4. PubMed ID: 31327740 [Abstract] [Full Text] [Related]
7. Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion. Jawahir V, Zolman BK. Plant Physiol; 2021 Feb 25; 185(1):120-136. PubMed ID: 33631795 [Abstract] [Full Text] [Related]
8. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Rashotte AM, Poupart J, Waddell CS, Muday GK. Plant Physiol; 2003 Oct 25; 133(2):761-72. PubMed ID: 14526119 [Abstract] [Full Text] [Related]
9. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana. Veloccia A, Fattorini L, Della Rovere F, Sofo A, D'Angeli S, Betti C, Falasca G, Altamura MM. J Exp Bot; 2016 Dec 25; 67(22):6445-6458. PubMed ID: 27831474 [Abstract] [Full Text] [Related]
10. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis. Poupart J, Waddell CS. Plant Physiol; 2000 Dec 25; 124(4):1739-51. PubMed ID: 11115890 [Abstract] [Full Text] [Related]
11. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Strader LC, Bartel B. Mol Plant; 2011 May 25; 4(3):477-86. PubMed ID: 21357648 [Abstract] [Full Text] [Related]
12. Why plants need more than one type of auxin. Simon S, Petrášek J. Plant Sci; 2011 Mar 25; 180(3):454-60. PubMed ID: 21421392 [Abstract] [Full Text] [Related]
13. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. Fattorini L, Veloccia A, Della Rovere F, D'Angeli S, Falasca G, Altamura MM. BMC Plant Biol; 2017 Jul 11; 17(1):121. PubMed ID: 28693423 [Abstract] [Full Text] [Related]
14. Involvement of ARM2 in the uptake of indole-3-butyric acid in rice (Oryza sativa L.) roots. Chhun T, Taketa S, Ichii M, Tsurumi S. Plant Cell Physiol; 2005 Jul 11; 46(7):1161-4. PubMed ID: 15879448 [Abstract] [Full Text] [Related]
15. Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. Sherp AM, Westfall CS, Alvarez S, Jez JM. J Biol Chem; 2018 Mar 23; 293(12):4277-4288. PubMed ID: 29462792 [Abstract] [Full Text] [Related]
16. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, Takeda-Kamiya N, Toyooka K, Kasahara H, Hayashi KI, Umeda M, Seo M. Proc Natl Acad Sci U S A; 2020 Dec 08; 117(49):31500-31509. PubMed ID: 33219124 [Abstract] [Full Text] [Related]
17. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Ruzicka K, Strader LC, Bailly A, Yang H, Blakeslee J, Langowski L, Nejedlá E, Fujita H, Itoh H, Syono K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J. Proc Natl Acad Sci U S A; 2010 Jun 08; 107(23):10749-53. PubMed ID: 20498067 [Abstract] [Full Text] [Related]
18. HOMEOBOX PROTEIN 24 mediates the conversion of indole-3-butyric acid to indole-3-acetic acid to promote root hair elongation. Zhao H, Wang Y, Zhao S, Fu Y, Zhu L. New Phytol; 2021 Dec 08; 232(5):2057-2070. PubMed ID: 34480752 [Abstract] [Full Text] [Related]
19. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture. Poupart J, Rashotte AM, Muday GK, Waddell CS. Plant Physiol; 2005 Nov 08; 139(3):1460-71. PubMed ID: 16258013 [Abstract] [Full Text] [Related]
20. Lipo-chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. Buendia L, Maillet F, O'Connor D, van de-Kerkhove Q, Danoun S, Gough C, Lefebvre B, Bensmihen S. New Phytol; 2019 Mar 08; 221(4):2190-2202. PubMed ID: 30347445 [Abstract] [Full Text] [Related] Page: [Next] [New Search]