These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 28993899

  • 1. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.
    Nielsen JC, Senne de Oliveira Lino F, Rasmussen TG, Thykær J, Workman CT, Basso TO.
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8237-8248. PubMed ID: 28993899
    [Abstract] [Full Text] [Related]

  • 2. Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must.
    Brown NA, de Castro PA, de Castro Pimentel Figueiredo B, Savoldi M, Buckeridge MS, Lopes ML, de Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH, Bonatto D, Malavazi I, Goldman GH.
    FEMS Yeast Res; 2013 May; 13(3):277-90. PubMed ID: 23360418
    [Abstract] [Full Text] [Related]

  • 3. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production.
    Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, Mieczkowski PA, Argueso JL, Pereira GA.
    Microb Cell Fact; 2015 Jan 30; 14():13. PubMed ID: 25633848
    [Abstract] [Full Text] [Related]

  • 4. Yeast selection for fuel ethanol production in Brazil.
    Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML.
    FEMS Yeast Res; 2008 Nov 30; 8(7):1155-63. PubMed ID: 18752628
    [Abstract] [Full Text] [Related]

  • 5. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC.
    Antonie Van Leeuwenhoek; 2014 Jan 30; 105(1):169-77. PubMed ID: 24198118
    [Abstract] [Full Text] [Related]

  • 6. Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must.
    Bonatelli ML, Ienczak JL, Labate CA.
    Antonie Van Leeuwenhoek; 2019 Aug 30; 112(8):1177-1187. PubMed ID: 30830509
    [Abstract] [Full Text] [Related]

  • 7. Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae.
    Eliodório KP, de Gois E Cunha GC, White BA, Patel DHM, Zhang F, Hettema EH, Basso TO, Gombert AK, Raghavendran V.
    Appl Environ Microbiol; 2022 Mar 08; 88(5):e0206821. PubMed ID: 35044803
    [Abstract] [Full Text] [Related]

  • 8. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.
    Della-Bianca BE, de Hulster E, Pronk JT, van Maris AJ, Gombert AK.
    FEMS Yeast Res; 2014 Dec 08; 14(8):1196-205. PubMed ID: 25263709
    [Abstract] [Full Text] [Related]

  • 9. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil.
    Raghavendran V, Basso TP, da Silva JB, Basso LC, Gombert AK.
    Antonie Van Leeuwenhoek; 2017 Jul 08; 110(7):971-983. PubMed ID: 28470565
    [Abstract] [Full Text] [Related]

  • 10. Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2.
    Pereira FB, Gomes DG, Guimarães PM, Teixeira JA, Domingues L.
    Biotechnol Lett; 2012 Jan 08; 34(1):45-53. PubMed ID: 21898130
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation.
    de Souza RB, dos Santos BM, de Fátima Rodrigues de Souza R, da Silva PK, Lucena BT, de Morais MA.
    J Ind Microbiol Biotechnol; 2012 Nov 08; 39(11):1645-50. PubMed ID: 22842986
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation.
    Li BZ, Cheng JS, Qiao B, Yuan YJ.
    J Ind Microbiol Biotechnol; 2010 Jan 08; 37(1):43-55. PubMed ID: 19821132
    [Abstract] [Full Text] [Related]

  • 16. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process.
    Paulino de Souza J, Dias do Prado C, Eleutherio ECA, Bonatto D, Malavazi I, Ferreira da Cunha A.
    Fungal Biol; 2018 Jun 08; 122(6):583-591. PubMed ID: 29801803
    [Abstract] [Full Text] [Related]

  • 17. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses.
    Liang L, Zhang YP, Zhang L, Zhu MJ, Liang SZ, Huang YN.
    J Ind Microbiol Biotechnol; 2008 Dec 08; 35(12):1605-13. PubMed ID: 18685877
    [Abstract] [Full Text] [Related]

  • 18. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation.
    Bassi APG, Meneguello L, Paraluppi AL, Sanches BCP, Ceccato-Antonini SR.
    Antonie Van Leeuwenhoek; 2018 Sep 08; 111(9):1661-1672. PubMed ID: 29488182
    [Abstract] [Full Text] [Related]

  • 19. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA, Silva LFL, Bastos RG, Ceccato-Antonini SR.
    World J Microbiol Biotechnol; 2019 Aug 20; 35(9):136. PubMed ID: 31432249
    [Abstract] [Full Text] [Related]

  • 20. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae.
    Bassi AP, da Silva JC, Reis VR, Ceccato-Antonini SR.
    World J Microbiol Biotechnol; 2013 Sep 20; 29(9):1661-76. PubMed ID: 23536198
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.