These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
104 related items for PubMed ID: 29029043
1. Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction. Sekar R, DiChristina TJ. FEMS Microbiol Lett; 2017 Nov 15; 364(21):. PubMed ID: 29029043 [Abstract] [Full Text] [Related]
2. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Sekar R, DiChristina TJ. Environ Sci Technol; 2014 Nov 04; 48(21):12858-67. PubMed ID: 25313646 [Abstract] [Full Text] [Related]
3. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
4. Resistance of perfluorooctanoic acid to degradation by the microbially driven Fenton reaction. Toporek Y, Shin HD, DiChristina TJ. FEMS Microbiol Lett; 2022 Jan 25; 368(21-24):. PubMed ID: 34918061 [Abstract] [Full Text] [Related]
5. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Peng Z, Shi M, Xia K, Dong Y, Shi L. Environ Pollut; 2020 Nov 25; 266(Pt 1):115413. PubMed ID: 32828026 [Abstract] [Full Text] [Related]
6. Mechanistic insights into sulfadimethoxine degradation via microbially driven Fenton reactions. Zhang L, Wang Y, Chen X, Hang X, Liu Y. J Hazard Mater; 2024 Sep 15; 477():135260. PubMed ID: 39047553 [Abstract] [Full Text] [Related]
7. Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA. Boopathy R, Shields S, Nunna S. Appl Biochem Biotechnol; 2012 Jul 15; 167(6):1560-8. PubMed ID: 22350940 [Abstract] [Full Text] [Related]
8. Decomposition of long-chain petroleum hydrocarbons by Fenton-like processes: Effects of ferrous iron source, salinity and temperature. Qin J, Lin C, Almebayedh H, Albader M. Ecotoxicol Environ Saf; 2019 Mar 15; 169():764-769. PubMed ID: 30502527 [Abstract] [Full Text] [Related]
9. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P. Environ Sci Technol; 2011 May 01; 45(9):3925-30. PubMed ID: 21469678 [Abstract] [Full Text] [Related]
10. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Jin HM, Kim JM, Lee HJ, Madsen EL, Jeon CO. Environ Sci Technol; 2012 Jul 17; 46(14):7731-40. PubMed ID: 22709320 [Abstract] [Full Text] [Related]
11. New insights in the dihydroxybenzenes-driven Fenton reaction: electrochemical study of interaction between dihydroxybenzenes and Fe(III). Contreras D, Rodríguez J, Basaez L, Freer J, Valenzuela R, Mansilla H, Vanýsek P. Water Sci Technol; 2011 Jul 17; 64(10):2103-8. PubMed ID: 22105135 [Abstract] [Full Text] [Related]
12. Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Sartoros C, Yerushalmi L, Béron P, Guiot SR. Chemosphere; 2005 Nov 17; 61(7):1042-50. PubMed ID: 16197980 [Abstract] [Full Text] [Related]
13. Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Yang Y, Chen J, Chen Z, Yu Z, Xue J, Luan T, Chen S, Zhou S. Water Res; 2022 Sep 01; 223():118979. PubMed ID: 35994787 [Abstract] [Full Text] [Related]
14. Degradation of anthracene and pyrene supplied by microcrystals and non-aqueous-phase liquids. Mutnuri S, Vasudevan N, Kaestner M. Appl Microbiol Biotechnol; 2005 Jun 01; 67(4):569-76. PubMed ID: 15729557 [Abstract] [Full Text] [Related]
15. [Biodegradation of polycyclic aromatic hydrocarbons by a preponderant brevibacterium]. Nie M, Zhang Z, Lei P. Huan Jing Ke Xue; 2001 Nov 01; 22(6):83-5. PubMed ID: 11855189 [Abstract] [Full Text] [Related]
16. Anthracene and Pyrene Biodegradation Performance of Marine Sponge Symbiont Bacteria Consortium. Marzuki I, Asaf R, Paena M, Athirah A, Nisaa K, Ahmad R, Kamaruddin M. Molecules; 2021 Nov 13; 26(22):. PubMed ID: 34833943 [Abstract] [Full Text] [Related]
17. Biodegradation of pyrene by bacterial consortia: Impact of natural surfactants and iron oxide nanoparticles. Elumalai P, Kumar AS, Dhandapani P, Cui J, Gao X, Prakash AA, Rajamohan R, AlSalhi MS, Devanesan S, Rajasekar A, Parthipan P. Environ Res; 2024 Feb 01; 242():117753. PubMed ID: 38008204 [Abstract] [Full Text] [Related]
18. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance. Rusevova K, Kopinke FD, Georgi A. J Hazard Mater; 2012 Nov 30; 241-242():433-40. PubMed ID: 23098995 [Abstract] [Full Text] [Related]
19. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors. Guieysse B, Viklund G. Chemosphere; 2005 Apr 30; 59(3):369-76. PubMed ID: 15763089 [Abstract] [Full Text] [Related]
20. Peculiarities of metabolism of anthracene and pyrene by laccase-producing fungus Pycnoporus sanguineus H1. Li X, Wang Y, Wu S, Qiu L, Gu L, Li J, Zhang B, Zhong W. Biotechnol Appl Biochem; 2014 Apr 30; 61(5):549-54. PubMed ID: 24372644 [Abstract] [Full Text] [Related] Page: [Next] [New Search]