These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
66 related items for PubMed ID: 2903799
1. Iontophoretic localization of Ca-sensitive sites controlling activation of ciliary beating in macrocilia of Beroë: the ciliary rete. Tamm SL. Cell Motil Cytoskeleton; 1988; 11(2):126-38. PubMed ID: 2903799 [Abstract] [Full Text] [Related]
2. Calcium activation of macrocilia in the ctenophore Beroë. Tamm SL. J Comp Physiol A; 1988 May; 163(1):23-31. PubMed ID: 2455043 [Abstract] [Full Text] [Related]
3. Control of reactivation and microtubule sliding by calcium, strontium, and barium in detergent-extracted macrocilia of Beroë. Tamm SL. Cell Motil Cytoskeleton; 1989 May; 12(2):104-12. PubMed ID: 2565772 [Abstract] [Full Text] [Related]
4. Ca/Ba/Sr-induced conformational changes of ciliary axonemes. Tamm S, Tamm S. Cell Motil Cytoskeleton; 1990 May; 17(3):187-96. PubMed ID: 1980094 [Abstract] [Full Text] [Related]
5. Calcium sensitivity extends the length of ATP-reactivated ciliary axonemes. Tamm SL, Tamm S. Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6987-91. PubMed ID: 2780555 [Abstract] [Full Text] [Related]
6. Development of macrociliary cells in Beroë. II. Formation of macrocilia. Tamm SL, Tamm S. J Cell Sci; 1988 Jan; 89 ( Pt 1)():81-95. PubMed ID: 2901424 [Abstract] [Full Text] [Related]
7. Massive actin bundle couples macrocilia to muscles in the ctenophore Beroë. Tamm SL, Tamm S. Cell Motil Cytoskeleton; 1987 Jan; 7(2):116-28. PubMed ID: 3581184 [Abstract] [Full Text] [Related]
8. Motility and mechanosensitivity of macrocilia in the ctenophore Beroë. Tamm SL. Nature; 1987 Jan; 305(5933):430-3. PubMed ID: 6621693 [Abstract] [Full Text] [Related]
9. Visualization of calcium transients controlling orientation of ciliary beat. Tamm SL, Terasaki M. J Cell Biol; 1994 Jun; 125(5):1127-35. PubMed ID: 8195294 [Abstract] [Full Text] [Related]
11. Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels. Gonda K, Yoshida A, Oami K, Takahashi M. Biochem Biophys Res Commun; 2004 Oct 22; 323(3):891-7. PubMed ID: 15381084 [Abstract] [Full Text] [Related]
13. Alternate patterns of doublet microtubule sliding in ATP-disintegrated macrocilia of the ctenophore Beroë. Tamm SL, Tamm S. J Cell Biol; 1984 Oct 22; 99(4 Pt 1):1364-71. PubMed ID: 6480696 [Abstract] [Full Text] [Related]
15. Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila. Hennessey TM, Kim DY, Oberski DJ, Hard R, Rankin SA, Pennock DG. Cell Motil Cytoskeleton; 2002 Dec 22; 53(4):281-8. PubMed ID: 12378538 [Abstract] [Full Text] [Related]
16. Sub-second calcium coupling between outside medium and subplasmalemmal stores during overstimulation/depolarisation-induced ciliary beat reversal in Paramecium cells. Plattner H, Diehl S, Husser MR, Hentschel J. Cell Calcium; 2006 Jun 22; 39(6):509-16. PubMed ID: 16524624 [Abstract] [Full Text] [Related]
17. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction. Husser MR, Hardt M, Blanchard MP, Hentschel J, Klauke N, Plattner H. Cell Calcium; 2004 Nov 22; 36(5):349-58. PubMed ID: 15451619 [Abstract] [Full Text] [Related]
18. How are different ciliary beat patterns produced? Sleigh MA, Barlow DI. Symp Soc Exp Biol; 1982 Nov 22; 35():139-57. PubMed ID: 6223395 [Abstract] [Full Text] [Related]
19. Spreading ciliary arrest in a mussel gill epithelium: characterization by quick fixation. Reed W, Satir P. J Cell Physiol; 1986 Feb 22; 126(2):191-205. PubMed ID: 3511077 [Abstract] [Full Text] [Related]
20. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. Tamm SL, Tamm S. J Cell Biol; 1981 Jun 22; 89(3):495-509. PubMed ID: 6114102 [Abstract] [Full Text] [Related] Page: [Next] [New Search]