These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
407 related items for PubMed ID: 29040312
1. End-tidal carbon dioxide measurement in preterm infants with low birth weight. Lin HJ, Huang CT, Hsiao HF, Chiang MC, Jeng MJ. PLoS One; 2017; 12(10):e0186408. PubMed ID: 29040312 [Abstract] [Full Text] [Related]
2. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Bhat YR, Abhishek N. Singapore Med J; 2008 Mar; 49(3):199-203. PubMed ID: 18363000 [Abstract] [Full Text] [Related]
3. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates. Jin Z, Yang M, Lin R, Huang W, Wang J, Hu Z, Shu Q. Pediatr Neonatol; 2017 Aug; 58(4):370-375. PubMed ID: 28511794 [Abstract] [Full Text] [Related]
4. Changes in dead space/tidal volume ratio and pulmonary mechanics after surfactant replacement therapy in respiratory distress syndrome of the newborn infants. Chung EH, Ko SY, Kim IY, Chang YS, Park WS. J Korean Med Sci; 2001 Feb; 16(1):51-6. PubMed ID: 11289401 [Abstract] [Full Text] [Related]
5. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A. Pediatrics; 2008 Dec; 122(6):e1219-24. PubMed ID: 19029196 [Abstract] [Full Text] [Related]
6. Disparity between mainstream and sidestream end-tidal carbon dioxide values and arterial carbon dioxide levels. Pekdemir M, Cinar O, Yilmaz S, Yaka E, Yuksel M. Respir Care; 2013 Jul; 58(7):1152-6. PubMed ID: 23322889 [Abstract] [Full Text] [Related]
7. [Correlation between end-tidal carbon dioxide and partial pressure of arterial carbon dioxide in ventilated newborns]. Feng JX, Liu XH, Huang HJ, Yu ZZ, Yang H, He LF. Zhongguo Dang Dai Er Ke Za Zhi; 2014 May; 16(5):465-8. PubMed ID: 24856993 [Abstract] [Full Text] [Related]
8. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system. Enekvist BJ, Luttropp HH, Johansson A. J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358 [Abstract] [Full Text] [Related]
9. Evaluation of the dead space/tidal volume ratio in patients with chronic congestive heart failure. Guazzi M, Marenzi G, Assanelli E, Perego GB, Cattadori G, Doria E, Agostoni PG. J Card Fail; 1995 Dec; 1(5):401-8. PubMed ID: 12836715 [Abstract] [Full Text] [Related]
10. [Simultaneous measurements of end-expiratory and transcutaneous carbon dioxide partial pressure in ventilated premature and newborn infants]. Arsowa S, Schmalisch G, Wauer RR. Klin Padiatr; 1997 Dec; 209(2):47-53. PubMed ID: 9198671 [Abstract] [Full Text] [Related]
11. Dose end-tidal carbon dioxide measurement correlate with arterial carbon dioxide in extremely low birth weight infants in the first week of life? Amuchou Singh S, Singhal N. Indian Pediatr; 2006 Jan; 43(1):20-5. PubMed ID: 16465002 [Abstract] [Full Text] [Related]
12. Predicting dead space ventilation in critically ill patients using clinically available data. Frankenfield DC, Alam S, Bekteshi E, Vender RL. Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453 [Abstract] [Full Text] [Related]
13. Infrared end-tidal CO2 measurement does not accurately predict arterial CO2 values or end-tidal to arterial PCO2 gradients in rabbits with lung injury. Hopper AO, Nystrom GA, Deming DD, Brown WR, Peabody JL. Pediatr Pulmonol; 1994 Mar; 17(3):189-96. PubMed ID: 8197000 [Abstract] [Full Text] [Related]
14. Use of 'ideal' alveolar air equations and corrected end-tidal PCO2 to estimate arterial PCO2 and physiological dead space during exercise in patients with heart failure. Van Iterson EH, Olson TP. Int J Cardiol; 2018 Jan 01; 250():176-182. PubMed ID: 29054325 [Abstract] [Full Text] [Related]
15. Randomized controlled trial of volume-targeted synchronized ventilation and conventional intermittent mandatory ventilation following initial exogenous surfactant therapy. Mrozek JD, Bendel-Stenzel EM, Meyers PA, Bing DR, Connett JE, Mammel MC. Pediatr Pulmonol; 2000 Jan 01; 29(1):11-8. PubMed ID: 10613781 [Abstract] [Full Text] [Related]
16. End-tidal carbon dioxide monitoring in very low birth weight infants: correlation and agreement with arterial carbon dioxide. Trevisanuto D, Giuliotto S, Cavallin F, Doglioni N, Toniazzo S, Zanardo V. Pediatr Pulmonol; 2012 Apr 01; 47(4):367-72. PubMed ID: 22102598 [Abstract] [Full Text] [Related]
17. Volume targeted ventilation and arterial carbon dioxide in extremely preterm infants. Shah S, Kaul A. J Neonatal Perinatal Med; 2013 Jan 01; 6(4):339-44. PubMed ID: 24441091 [Abstract] [Full Text] [Related]
18. [The value of capnography and exhaled CO2 in neonatal intensive care units]. García Cantó E, Gutiérrez Laso A, Izquierdo Macián I, Alberola Pérez A, Morcillo Sopena F. An Esp Pediatr; 1997 Aug 01; 47(2):177-80. PubMed ID: 9382351 [Abstract] [Full Text] [Related]
19. Monitoring Dead Space in Mechanically Ventilated Children: Volumetric Capnography Versus Time-Based Capnography. Bhalla AK, Rubin S, Newth CJ, Ross P, Morzov R, Soto-Campos G, Khemani R. Respir Care; 2015 Nov 01; 60(11):1548-55. PubMed ID: 26199451 [Abstract] [Full Text] [Related]
20. Effect of Minimally Invasive Surfactant Therapy on Lung Volume and Ventilation in Preterm Infants. van der Burg PS, de Jongh FH, Miedema M, Frerichs I, van Kaam AH. J Pediatr; 2016 Mar 01; 170():67-72. PubMed ID: 26724118 [Abstract] [Full Text] [Related] Page: [Next] [New Search]