These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
427 related items for PubMed ID: 29040833
21. Generic top-functionalization of patterned antifouling zwitterionic polymers on indium tin oxide. Li Y, Giesbers M, Gerth M, Zuilhof H. Langmuir; 2012 Aug 28; 28(34):12509-17. PubMed ID: 22888834 [Abstract] [Full Text] [Related]
22. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces. Wei Q, Yu B, Wang X, Zhou F. Macromol Rapid Commun; 2014 Jun 28; 35(11):1046-54. PubMed ID: 24648357 [Abstract] [Full Text] [Related]
23. Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Kondo T, Nomura K, Murou M, Gemmei-Ide M, Kitano H, Noguchi H, Uosaki K, Ohno K, Saruwatari Y. Colloids Surf B Biointerfaces; 2012 Dec 01; 100():126-32. PubMed ID: 22766288 [Abstract] [Full Text] [Related]
24. Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Zhao C, Li L, Zheng J. Langmuir; 2010 Nov 16; 26(22):17375-82. PubMed ID: 20942427 [Abstract] [Full Text] [Related]
25. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. Lilge I, Schönherr H. Langmuir; 2016 Jan 26; 32(3):838-47. PubMed ID: 26771447 [Abstract] [Full Text] [Related]
26. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Zhang Z, Chao T, Chen S, Jiang S. Langmuir; 2006 Nov 21; 22(24):10072-7. PubMed ID: 17107002 [Abstract] [Full Text] [Related]
27. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Xu FJ, Zhong SP, Yung LY, Kang ET, Neoh KG. Biomacromolecules; 2004 Nov 21; 5(6):2392-403. PubMed ID: 15530056 [Abstract] [Full Text] [Related]
28. Long-term stability of cell micropatterns on poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide)-patterned silicon oxide surfaces. Cho WK, Kong B, Park HJ, Kim J, Chegal W, Choi JS, Choi IS. Biomaterials; 2010 Dec 21; 31(36):9565-74. PubMed ID: 21056465 [Abstract] [Full Text] [Related]
29. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption. Coad BR, Lu Y, Meagher L. Acta Biomater; 2012 Feb 21; 8(2):608-18. PubMed ID: 22023749 [Abstract] [Full Text] [Related]
31. Non-biofouling property of well-defined concentrated polymer brushes. Yoshikawa C, Qiu J, Huang CF, Shimizu Y, Suzuki J, van den Bosch E. Colloids Surf B Biointerfaces; 2015 Mar 01; 127():213-20. PubMed ID: 25679494 [Abstract] [Full Text] [Related]
32. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Liu P, Chen Q, Yuan B, Chen M, Wu S, Lin S, Shen J. Mater Sci Eng C Mater Biol Appl; 2013 Oct 01; 33(7):3865-74. PubMed ID: 23910289 [Abstract] [Full Text] [Related]
33. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA, Nowakowska J, Khanna N, Landmann R, Klok HA. Macromol Biosci; 2016 May 01; 16(5):676-85. PubMed ID: 26757483 [Abstract] [Full Text] [Related]
34. Universal Strategy for Efficient Fabrication of Blood Compatible Surfaces via Polydopamine-Assisted Surface-Initiated Activators Regenerated by Electron Transfer Atom-Transfer Radical Polymerization of Zwitterions. Li N, Li T, Qiao XY, Li R, Yao Y, Gong YK. ACS Appl Mater Interfaces; 2020 Mar 11; 12(10):12337-12344. PubMed ID: 32096981 [Abstract] [Full Text] [Related]
35. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization. Ohno K, Mori C, Akashi T, Yoshida S, Tago Y, Tsujii Y, Tabata Y. Biomacromolecules; 2013 Oct 14; 14(10):3453-62. PubMed ID: 23957585 [Abstract] [Full Text] [Related]
36. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y, Shen J, Yuan J. J Colloid Interface Sci; 2016 Oct 15; 480():205-217. PubMed ID: 27442148 [Abstract] [Full Text] [Related]
37. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Tu Q, Wang JC, Liu R, He J, Zhang Y, Shen S, Xu J, Liu J, Yuan MS, Wang J. Colloids Surf B Biointerfaces; 2013 Feb 01; 102():361-70. PubMed ID: 23006574 [Abstract] [Full Text] [Related]
38. Binary polymer brush patterns from facile initiator stickiness for cell culturing. Chen L, Li P, Lu X, Wang S, Zheng Z. Faraday Discuss; 2019 Oct 30; 219(0):189-202. PubMed ID: 31317169 [Abstract] [Full Text] [Related]
39. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, Shen J. J Colloid Interface Sci; 2016 Oct 15; 480():91-101. PubMed ID: 27416290 [Abstract] [Full Text] [Related]
40. Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces. Mei Y, Wu T, Xu C, Langenbach KJ, Elliott JT, Vogt BD, Beers KL, Amis EJ, Washburn NR. Langmuir; 2005 Dec 20; 21(26):12309-14. PubMed ID: 16343007 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]