These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 29040848
1. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide. Wang Y, Li K, Chen X, Zhou H. Bioresour Technol; 2018 Feb; 249():146-153. PubMed ID: 29040848 [Abstract] [Full Text] [Related]
2. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide. Wang Y, Chen X, Zhou H. Bioresour Technol; 2018 Nov; 268():480-487. PubMed ID: 30114667 [Abstract] [Full Text] [Related]
3. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948 [Abstract] [Full Text] [Related]
4. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K, Auvinen H, Johnson DB. Biotechnol Bioeng; 2008 Nov 01; 101(4):739-50. PubMed ID: 18496880 [Abstract] [Full Text] [Related]
5. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. Li XT, Huang ZS, Huang Y, Jiang Z, Liang ZL, Yin HQ, Zhang GJ, Jia Y, Deng Y, Liu SJ, Jiang CY. Sci Total Environ; 2023 Apr 15; 869():161752. PubMed ID: 36690115 [Abstract] [Full Text] [Related]
6. Comparison of bioleaching of a sulfidic copper ore (chalcopyrite) in column percolators and in stirred-tank bioreactors including microbial community analysis. Bakhti A, Moghimi H, Bozorg A, Stankovic S, Manafi Z, Schippers A. Chemosphere; 2024 Feb 15; 349():140945. PubMed ID: 38104736 [Abstract] [Full Text] [Related]
7. Bioleaching of copper sulfide minerals assisted by microbial fuel cells. Huang T, Wei X, Zhang S. Bioresour Technol; 2019 Sep 15; 288():121561. PubMed ID: 31152952 [Abstract] [Full Text] [Related]
8. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. J Environ Manage; 2022 Feb 01; 303():114192. PubMed ID: 34861501 [Abstract] [Full Text] [Related]
9. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Chen W, Yin S, Wu A, Wang L, Chen X. Bioresour Technol; 2020 Feb 01; 297():122453. PubMed ID: 31787510 [Abstract] [Full Text] [Related]
10. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y, Liu X, Dong W, Liang Y, Niu J, Gu Y, Ma L, Hao X, Zhang X, Xu Z, Yin H. Arch Microbiol; 2017 Jul 01; 199(5):757-766. PubMed ID: 28260145 [Abstract] [Full Text] [Related]
11. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor. Africa CJ, van Hille RP, Harrison ST. Appl Microbiol Biotechnol; 2013 Feb 01; 97(3):1317-24. PubMed ID: 22410741 [Abstract] [Full Text] [Related]
12. The shift of microbial community under the adjustment of initial and processing pH during bioleaching of chalcopyrite concentrate by moderate thermophiles. Yu R, Shi L, Gu G, Zhou D, You L, Chen M, Qiu G, Zeng W. Bioresour Technol; 2014 Jun 01; 162():300-7. PubMed ID: 24762759 [Abstract] [Full Text] [Related]
13. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. Feng S, Yin Y, Yin Z, Zhang H, Zhu D, Tong Y, Yang H. Environ Res; 2021 Mar 01; 194():110702. PubMed ID: 33400950 [Abstract] [Full Text] [Related]
14. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Spolaore P, Joulian C, Gouin J, Morin D, d'Hugues P. Appl Microbiol Biotechnol; 2011 Jan 01; 89(2):441-8. PubMed ID: 20890755 [Abstract] [Full Text] [Related]
15. Effect of particle-particle shearing on the bioleaching of sulfide minerals. Chong N, Karamanev DG, Margaritis A. Biotechnol Bioeng; 2002 Nov 05; 80(3):349-57. PubMed ID: 12226868 [Abstract] [Full Text] [Related]
16. Silicate mineral dissolution during heap bioleaching. Dopson M, Halinen AK, Rahunen N, Boström D, Sundkvist JE, Riekkola-Vanhanen M, Kaksonen AH, Puhakka JA. Biotechnol Bioeng; 2008 Mar 01; 99(4):811-20. PubMed ID: 17705245 [Abstract] [Full Text] [Related]
17. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles. Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G. Bioresour Technol; 2014 Feb 01; 153():300-6. PubMed ID: 24374030 [Abstract] [Full Text] [Related]
18. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. Huang Z, Feng S, Tong Y, Yang H. J Environ Manage; 2019 Jul 15; 242():11-21. PubMed ID: 31026798 [Abstract] [Full Text] [Related]
19. [Microbial diversity and characteristics of cultivable microorganisms in bioleaching reactors]. Liu Y, Guo X, Jiang C. Wei Sheng Wu Xue Bao; 2010 Feb 15; 50(2):244-50. PubMed ID: 20387468 [Abstract] [Full Text] [Related]
20. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Remonsellez F, Galleguillos F, Moreno-Paz M, Parro V, Acosta M, Demergasso C. Microb Biotechnol; 2009 Nov 15; 2(6):613-24. PubMed ID: 21255296 [Abstract] [Full Text] [Related] Page: [Next] [New Search]