These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 29045465

  • 41. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding.
    Meng X, Xiang J, Zheng R, Wu FX, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1592-1602. PubMed ID: 33417563
    [Abstract] [Full Text] [Related]

  • 42. Identifying protein complexes based on the integration of PPI network and gene expression data.
    Chen W, Li M, Wu X, Wang J.
    Int J Bioinform Res Appl; 2015; 11(1):30-44. PubMed ID: 25667384
    [Abstract] [Full Text] [Related]

  • 43. Discover protein complexes in protein-protein interaction networks using parametric local modularity.
    Kim J, Tan K.
    BMC Bioinformatics; 2010 Oct 19; 11():521. PubMed ID: 20958996
    [Abstract] [Full Text] [Related]

  • 44. Identification of protein complexes by integrating multiple alignment of protein interaction networks.
    Ma CY, Chen YP, Berger B, Liao CS.
    Bioinformatics; 2017 Jun 01; 33(11):1681-1688. PubMed ID: 28130237
    [Abstract] [Full Text] [Related]

  • 45. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L, Liao L, Wu CH.
    BMC Bioinformatics; 2018 Mar 22; 19(1):103. PubMed ID: 29566671
    [Abstract] [Full Text] [Related]

  • 46. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS, Xu K, Wilkins MR.
    J Proteome Res; 2011 Oct 07; 10(10):4744-56. PubMed ID: 21842913
    [Abstract] [Full Text] [Related]

  • 47. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 07; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 48. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J, Li C, Ye B, Zhong W.
    BMC Bioinformatics; 2012 Jun 25; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [Abstract] [Full Text] [Related]

  • 49. Predicting protein complexes from PPI data: a core-attachment approach.
    Leung HC, Xiang Q, Yiu SM, Chin FY.
    J Comput Biol; 2009 Feb 25; 16(2):133-44. PubMed ID: 19193141
    [Abstract] [Full Text] [Related]

  • 50. A novel method to predict essential proteins based on tensor and HITS algorithm.
    Zhang Z, Luo Y, Hu S, Li X, Wang L, Zhao B.
    Hum Genomics; 2020 Apr 06; 14(1):14. PubMed ID: 32252824
    [Abstract] [Full Text] [Related]

  • 51. Protein complexes identification based on go attributed network embedding.
    Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z.
    BMC Bioinformatics; 2018 Dec 20; 19(1):535. PubMed ID: 30572820
    [Abstract] [Full Text] [Related]

  • 52. Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction Network.
    Li M, Meng X, Zheng R, Wu FX, Li Y, Pan Y, Wang J.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Dec 20; 17(3):817-827. PubMed ID: 28885159
    [Abstract] [Full Text] [Related]

  • 53. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 54. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J.
    PLoS One; 2017 Jun 14; 12(9):e0183460. PubMed ID: 28937982
    [Abstract] [Full Text] [Related]

  • 55. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B, Zhao Y, Zhang X, Zhang Z, Zhang F, Wang L.
    BMC Bioinformatics; 2019 Jun 24; 20(1):355. PubMed ID: 31234779
    [Abstract] [Full Text] [Related]

  • 56. Identifying protein complexes based on multiple topological structures in PPI networks.
    Chen B, Wu FX.
    IEEE Trans Nanobioscience; 2013 Sep 24; 12(3):165-72. PubMed ID: 23974659
    [Abstract] [Full Text] [Related]

  • 57. Temporal dynamics of protein complexes in PPI networks: a case study using yeast cell cycle dynamics.
    Srihari S, Leong HW.
    BMC Bioinformatics; 2012 Sep 24; 13 Suppl 17(Suppl 17):S16. PubMed ID: 23282200
    [Abstract] [Full Text] [Related]

  • 58. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J.
    BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429
    [Abstract] [Full Text] [Related]

  • 59. An efficient protein complex mining algorithm based on Multistage Kernel Extension.
    Shen X, Zhao Y, Li Y, He T, Yang J, Hu X.
    BMC Bioinformatics; 2014 May 13; 15 Suppl 12(Suppl 12):S7. PubMed ID: 25474367
    [Abstract] [Full Text] [Related]

  • 60. PROPER: global protein interaction network alignment through percolation matching.
    Kazemi E, Hassani H, Grossglauser M, Pezeshgi Modarres H.
    BMC Bioinformatics; 2016 Dec 12; 17(1):527. PubMed ID: 27955623
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.