These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1368 related items for PubMed ID: 29050528

  • 1. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME.
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [Abstract] [Full Text] [Related]

  • 2. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment.
    Izadifar M, Babyn P, Kelly ME, Chapman D, Chen X.
    Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF.
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [Abstract] [Full Text] [Related]

  • 5. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A.
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [Abstract] [Full Text] [Related]

  • 6. 3D bioprinted complex constructs reinforced by hybrid multilayers of electrospun nanofiber sheets.
    Yoon Y, Kim CH, Lee JE, Yoon J, Lee NK, Kim TH, Park SH.
    Biofabrication; 2019 Mar 28; 11(2):025015. PubMed ID: 30786264
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J, Wehrle E, Vetsch JR, Paul GR, Rubert M, Müller R.
    Biomed Mater; 2019 Sep 25; 14(6):065009. PubMed ID: 31426033
    [Abstract] [Full Text] [Related]

  • 9. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W.
    Acta Biomater; 2017 Mar 01; 50():154-164. PubMed ID: 27940192
    [Abstract] [Full Text] [Related]

  • 10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J, Wehrle E, Adamek P, Paul GR, Qin XH, Rubert M, Müller R.
    Acta Biomater; 2020 Sep 15; 114():307-322. PubMed ID: 32673752
    [Abstract] [Full Text] [Related]

  • 11. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M.
    Acta Biomater; 2016 Sep 01; 41():133-46. PubMed ID: 27212425
    [Abstract] [Full Text] [Related]

  • 12. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim DH.
    Acta Biomater; 2021 Jan 01; 119():75-88. PubMed ID: 33166713
    [Abstract] [Full Text] [Related]

  • 13. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS, Levato R, Costa PF, Castilho MD, Alcala-Orozco CR, van Dorenmalen KMA, Melchels FPW, Gawlitta D, Hooper GJ, Malda J, Woodfield TBF.
    Biofabrication; 2018 May 11; 10(3):034101. PubMed ID: 29693552
    [Abstract] [Full Text] [Related]

  • 14. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P, Ng WL, An J, Chua CK, Tan LP.
    PLoS One; 2019 May 11; 14(6):e0216776. PubMed ID: 31188827
    [Abstract] [Full Text] [Related]

  • 15. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A.
    Biotechnol Bioeng; 2020 Apr 11; 117(4):1148-1158. PubMed ID: 31840798
    [Abstract] [Full Text] [Related]

  • 16. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs.
    Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F.
    Int J Nanomedicine; 2017 Apr 11; 12():3109-3120. PubMed ID: 28450785
    [Abstract] [Full Text] [Related]

  • 17. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
    Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A.
    ACS Nano; 2013 Mar 26; 7(3):2369-80. PubMed ID: 23363247
    [Abstract] [Full Text] [Related]

  • 18. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S.
    Sci Rep; 2016 Apr 19; 6():24474. PubMed ID: 27091175
    [Abstract] [Full Text] [Related]

  • 19. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG, Cornelissen DJ, Shu W.
    Methods Mol Biol; 2021 Apr 19; 2147():143-148. PubMed ID: 32840817
    [Abstract] [Full Text] [Related]

  • 20. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC, Critchley SE, Rencsok EM, Kelly DJ.
    Biofabrication; 2016 Oct 07; 8(4):045002. PubMed ID: 27716628
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 69.