These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 29052192

  • 1. Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis.
    Pajoro A, Muiño JM, Angenent GC, Kaufmann K.
    Methods Mol Biol; 2018; 1675():167-181. PubMed ID: 29052192
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants.
    Zhang W, Jiang J.
    Methods Mol Biol; 2018; 1830():353-366. PubMed ID: 30043381
    [Abstract] [Full Text] [Related]

  • 4. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G, Millán-Zambrano G, Medina DA, Jordán-Pla A, Pérez-Ortín JE, Peñate X, Chávez S.
    Epigenetics Chromatin; 2017 Dec 07; 10(1):58. PubMed ID: 29212533
    [Abstract] [Full Text] [Related]

  • 5. MNase-Seq Analysis for Identifying Stress-Altered Nucleosome Occupancy in Plants.
    Watkins C, Willyerd KL, Liao CP, Ruhl DR, Chen C.
    Methods Mol Biol; 2024 Dec 07; 2832():33-46. PubMed ID: 38869785
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Analyses of Promoter , Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq.
    Esnault C, Magat T, García-Oliver E, Andrau JC.
    Methods Mol Biol; 2021 Dec 07; 2351():93-104. PubMed ID: 34382185
    [Abstract] [Full Text] [Related]

  • 9. Analyzing the global chromatin structure of keratinocytes by MNase-seq.
    Rizzo JM, Sinha S.
    Methods Mol Biol; 2014 Dec 07; 1195():49-59. PubMed ID: 24676786
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize.
    Vera DL, Madzima TF, Labonne JD, Alam MP, Hoffman GG, Girimurugan SB, Zhang J, McGinnis KM, Dennis JH, Bass HW.
    Plant Cell; 2014 Oct 07; 26(10):3883-93. PubMed ID: 25361955
    [Abstract] [Full Text] [Related]

  • 16. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo.
    Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M.
    PLoS One; 2017 Oct 07; 12(10):e0186974. PubMed ID: 29073207
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Analysis of chromatin organization by deep sequencing technologies.
    Platt JL, Kent NA, Harwood AJ, Kimmel AR.
    Methods Mol Biol; 2013 Oct 07; 983():173-83. PubMed ID: 23494307
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome.
    Lim HW, Iwafuchi M.
    Methods Mol Biol; 2023 Oct 07; 2599():59-68. PubMed ID: 36427143
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.