These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 29054096

  • 1. Simplified AutoDock force field for hydrated binding sites.
    Wojciechowski M.
    J Mol Graph Model; 2017 Nov; 78():74-80. PubMed ID: 29054096
    [Abstract] [Full Text] [Related]

  • 2. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT.
    J Chem Inf Model; 2013 Jun 24; 53(6):1388-405. PubMed ID: 23662606
    [Abstract] [Full Text] [Related]

  • 3. Using AutoDock for ligand-receptor docking.
    Morris GM, Huey R, Olson AJ.
    Curr Protoc Bioinformatics; 2008 Dec 24; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [Abstract] [Full Text] [Related]

  • 4. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A, Orro A, Carlsson J.
    J Chem Inf Model; 2018 Feb 26; 58(2):350-361. PubMed ID: 29308882
    [Abstract] [Full Text] [Related]

  • 5. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method.
    Hogues H, Sulea T, Gaudreault F, Corbeil CR, Purisima EO.
    J Comput Aided Mol Des; 2018 Jan 26; 32(1):143-150. PubMed ID: 28983727
    [Abstract] [Full Text] [Related]

  • 6. Development and validation of a modular, extensible docking program: DOCK 5.
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC.
    J Comput Aided Mol Des; 2006 Jan 26; 20(10-11):601-19. PubMed ID: 17149653
    [Abstract] [Full Text] [Related]

  • 7. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation.
    Grudinin S, Kadukova M, Eisenbarth A, Marillet S, Cazals F.
    J Comput Aided Mol Des; 2016 Sep 26; 30(9):791-804. PubMed ID: 27718029
    [Abstract] [Full Text] [Related]

  • 8. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A, Zhang KYJ.
    J Comput Aided Mol Des; 2019 Dec 26; 33(12):1045-1055. PubMed ID: 31463704
    [Abstract] [Full Text] [Related]

  • 9. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J, He X, Zhang JZ.
    J Chem Inf Model; 2013 Jun 24; 53(6):1306-14. PubMed ID: 23651068
    [Abstract] [Full Text] [Related]

  • 10. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA, Kramer C, Mozziconacci JC, Sherman W.
    J Chem Inf Model; 2014 Oct 27; 54(10):2697-717. PubMed ID: 25266271
    [Abstract] [Full Text] [Related]

  • 11. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T.
    Phys Chem Chem Phys; 2016 May 14; 18(18):12964-75. PubMed ID: 27108770
    [Abstract] [Full Text] [Related]

  • 12. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S, Tanaka S.
    Molecules; 2016 Nov 23; 21(11):. PubMed ID: 27886114
    [Abstract] [Full Text] [Related]

  • 13. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking.
    Forli S, Olson AJ.
    J Med Chem; 2012 Jan 26; 55(2):623-38. PubMed ID: 22148468
    [Abstract] [Full Text] [Related]

  • 14. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M.
    J Chem Inf Model; 2013 Nov 25; 53(11):3097-112. PubMed ID: 24171431
    [Abstract] [Full Text] [Related]

  • 15. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I, Martin YC.
    J Med Chem; 1999 Mar 11; 42(5):791-804. PubMed ID: 10072678
    [Abstract] [Full Text] [Related]

  • 16. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.
    Bayden AS, Moustakas DT, Joseph-McCarthy D, Lamb ML.
    J Chem Inf Model; 2015 Aug 24; 55(8):1552-65. PubMed ID: 26176600
    [Abstract] [Full Text] [Related]

  • 17. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X, Qiu L, Yan C, Ma Z, Grinter SZ, Zou X.
    Proteins; 2017 Mar 24; 85(3):424-434. PubMed ID: 27802576
    [Abstract] [Full Text] [Related]

  • 18. Molecular docking with ligand attached water molecules.
    Lie MA, Thomsen R, Pedersen CN, Schiøtt B, Christensen MH.
    J Chem Inf Model; 2011 Apr 25; 51(4):909-17. PubMed ID: 21452852
    [Abstract] [Full Text] [Related]

  • 19. A semiempirical free energy force field with charge-based desolvation.
    Huey R, Morris GM, Olson AJ, Goodsell DS.
    J Comput Chem; 2007 Apr 30; 28(6):1145-52. PubMed ID: 17274016
    [Abstract] [Full Text] [Related]

  • 20. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015.
    Slynko I, Da Silva F, Bret G, Rognan D.
    J Comput Aided Mol Des; 2016 Sep 30; 30(9):669-683. PubMed ID: 27480696
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.