These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
626 related items for PubMed ID: 29069282
1. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Liu Q, Xia F, Yin Q, Jiang R. Bioinformatics; 2018 Mar 01; 34(5):732-738. PubMed ID: 29069282 [Abstract] [Full Text] [Related]
2. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility. Liu Q, Hua K, Zhang X, Wong WH, Jiang R. Genomics Proteomics Bioinformatics; 2022 Jun 01; 20(3):496-507. PubMed ID: 35293310 [Abstract] [Full Text] [Related]
3. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers. Chen S, Gan M, Lv H, Jiang R. Genomics Proteomics Bioinformatics; 2021 Aug 01; 19(4):565-577. PubMed ID: 33581335 [Abstract] [Full Text] [Related]
4. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Min X, Zeng W, Chen N, Chen T, Jiang R. Bioinformatics; 2017 Jul 15; 33(14):i92-i101. PubMed ID: 28881969 [Abstract] [Full Text] [Related]
5. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Zeng W, Wang Y, Jiang R. Bioinformatics; 2020 Jan 15; 36(2):496-503. PubMed ID: 31318408 [Abstract] [Full Text] [Related]
8. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter. Quach B, Furey TS. Bioinformatics; 2017 Apr 01; 33(7):956-963. PubMed ID: 27993786 [Abstract] [Full Text] [Related]
9. ALTRE: workflow for defining ALTered Regulatory Elements using chromatin accessibility data. Baskin E, Farouni R, Mathé EA. Bioinformatics; 2017 Mar 01; 33(5):740-742. PubMed ID: 28011773 [Abstract] [Full Text] [Related]
10. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J, Lähdesmäki H. Bioinformatics; 2015 Sep 01; 31(17):2852-9. PubMed ID: 25957350 [Abstract] [Full Text] [Related]
11. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Nair S, Kim DS, Perricone J, Kundaje A. Bioinformatics; 2019 Jul 15; 35(14):i108-i116. PubMed ID: 31510655 [Abstract] [Full Text] [Related]
12. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network. Xu C, Liu Q, Zhou J, Xie M, Feng J, Jiang T. Bioinformatics; 2020 Mar 01; 36(5):1397-1404. PubMed ID: 31693090 [Abstract] [Full Text] [Related]
13. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences. Greenside P, Shimko T, Fordyce P, Kundaje A. Bioinformatics; 2018 Sep 01; 34(17):i629-i637. PubMed ID: 30423062 [Abstract] [Full Text] [Related]
14. Discover regulatory DNA elements using chromatin signatures and artificial neural network. Firpi HA, Ucar D, Tan K. Bioinformatics; 2010 Jul 01; 26(13):1579-86. PubMed ID: 20453004 [Abstract] [Full Text] [Related]
15. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks. Avsec Ž, Barekatain M, Cheng J, Gagneur J. Bioinformatics; 2018 Apr 15; 34(8):1261-1269. PubMed ID: 29155928 [Abstract] [Full Text] [Related]
16. Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information. Onimaru K, Nishimura O, Kuraku S. PLoS One; 2020 Apr 15; 15(7):e0235748. PubMed ID: 32701977 [Abstract] [Full Text] [Related]
17. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, Shu W. Bioinformatics; 2017 Jul 01; 33(13):1930-1936. PubMed ID: 28334114 [Abstract] [Full Text] [Related]
18. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. Li Y, Shi W, Wasserman WW. BMC Bioinformatics; 2018 May 31; 19(1):202. PubMed ID: 29855387 [Abstract] [Full Text] [Related]
19. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Budach S, Marsico A. Bioinformatics; 2018 Sep 01; 34(17):3035-3037. PubMed ID: 29659719 [Abstract] [Full Text] [Related]
20. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. Pan X, Shen HB. BMC Bioinformatics; 2017 Feb 28; 18(1):136. PubMed ID: 28245811 [Abstract] [Full Text] [Related] Page: [Next] [New Search]