These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 29074397

  • 1. Helix structure of the double-stranded DNA for aptameric biosensing and imaging of cytochrome c.
    Jamshidi Moghadam S, Azadbakh A.
    Anal Biochem; 2018 Jan 01; 540-541():20-29. PubMed ID: 29074397
    [Abstract] [Full Text] [Related]

  • 2. A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine.
    Azadbakht A, Roushani M, Abbasi AR, Menati S, Derikvand Z.
    Mater Sci Eng C Mater Biol Appl; 2016 Nov 01; 68():585-593. PubMed ID: 27524058
    [Abstract] [Full Text] [Related]

  • 3. Design and characterization of electrochemical dopamine-aptamer as convenient and integrated sensing platform.
    Azadbakht A, Roushani M, Abbasi AR, Derikvand Z.
    Anal Biochem; 2016 Aug 15; 507():47-57. PubMed ID: 27173607
    [Abstract] [Full Text] [Related]

  • 4. Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes.
    Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A.
    Anal Biochem; 2016 Nov 01; 512():47-57. PubMed ID: 27307183
    [Abstract] [Full Text] [Related]

  • 5. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin.
    Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K.
    Biosens Bioelectron; 2016 Jun 15; 80():532-537. PubMed ID: 26894983
    [Abstract] [Full Text] [Related]

  • 6. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform.
    Beiranvand ZS, Abbasi AR, Dehdashtian S, Karimi Z, Azadbakht A.
    Anal Biochem; 2017 Feb 01; 518():35-45. PubMed ID: 27789234
    [Abstract] [Full Text] [Related]

  • 7. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D.
    Talanta; 2016 Feb 01; 146():23-8. PubMed ID: 26695229
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo.
    Zhang D, Ma J, Meng X, Xu Z, Zhang J, Fang Y, Guo Y.
    Anal Chim Acta; 2019 Oct 17; 1076():55-63. PubMed ID: 31203964
    [Abstract] [Full Text] [Related]

  • 9. Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe2 nanoflowers and gold nanoparticles as signal amplifiers.
    Azadbakht A, Abbasi AR.
    Mikrochim Acta; 2018 Dec 17; 186(1):23. PubMed ID: 30560387
    [Abstract] [Full Text] [Related]

  • 10. Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels.
    Wu D, Ren X, Hu L, Fan D, Zheng Y, Wei Q.
    Biosens Bioelectron; 2015 Dec 15; 74():391-7. PubMed ID: 26164010
    [Abstract] [Full Text] [Related]

  • 11. An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters.
    Chen L, Sha L, Qiu Y, Wang G, Jiang H, Zhang X.
    Nanoscale; 2015 Feb 21; 7(7):3300-8. PubMed ID: 25623467
    [Abstract] [Full Text] [Related]

  • 12. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy.
    Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W.
    Biosens Bioelectron; 2017 Jan 15; 87():433-438. PubMed ID: 27589408
    [Abstract] [Full Text] [Related]

  • 13. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels.
    Azadbakht A, Roushani M, Abbasi AR, Derikvand Z.
    Anal Biochem; 2016 Nov 01; 512():58-69. PubMed ID: 27515992
    [Abstract] [Full Text] [Related]

  • 14. Electrochemical switching with a DNA aptamer-based electrochemical sensor.
    Beiranvand S, Azadbakht A.
    Mater Sci Eng C Mater Biol Appl; 2017 Jul 01; 76():925-933. PubMed ID: 28482608
    [Abstract] [Full Text] [Related]

  • 15. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin.
    Deng L, Du Y, Xu JJ, Chen HY.
    Biosens Bioelectron; 2014 Sep 15; 59():58-63. PubMed ID: 24699694
    [Abstract] [Full Text] [Related]

  • 16. Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection.
    Yeh FY, Liu TY, Tseng IH, Yang CW, Lu LC, Lin CS.
    Biosens Bioelectron; 2014 Nov 15; 61():336-43. PubMed ID: 24912033
    [Abstract] [Full Text] [Related]

  • 17. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W, Shen L, Wang X, Yang C, Yu J, Yan M, Song X.
    Biosens Bioelectron; 2016 Aug 15; 82():132-9. PubMed ID: 27088368
    [Abstract] [Full Text] [Related]

  • 18. Electrochemical sensing of L-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites.
    Liang J, Chen Z, Guo L, Li L.
    Chem Commun (Camb); 2011 May 21; 47(19):5476-8. PubMed ID: 21483916
    [Abstract] [Full Text] [Related]

  • 19. Design of a Sensitive and Selective Electrochemical Aptasensor for the Determination of the Complementary cDNA of miRNA-145 Based on the Intercalation and Electrochemical Reduction of Doxorubicin.
    Mohamadi M, Mostafavi A, Torkzadeh-Mahani M.
    J AOAC Int; 2017 Nov 01; 100(6):1754-1760. PubMed ID: 28421985
    [Abstract] [Full Text] [Related]

  • 20. Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin.
    Nia NG, Azadbakht A.
    Mikrochim Acta; 2018 Jun 21; 185(7):333. PubMed ID: 29931498
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.