These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


292 related items for PubMed ID: 29075116

  • 21. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H, Hwangbo H, Koo Y, Kim G.
    Int J Mol Sci; 2020 May 11; 21(9):. PubMed ID: 32403422
    [Abstract] [Full Text] [Related]

  • 22. Surface mineralized hybrid nanofibrous scaffolds based on poly(l-lactide) and alginate enhances osteogenic differentiation of stem cells.
    Ataie M, Shabani I, Seyedjafari E.
    J Biomed Mater Res A; 2019 Mar 11; 107(3):586-596. PubMed ID: 30390410
    [Abstract] [Full Text] [Related]

  • 23. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y.
    Mater Sci Eng C Mater Biol Appl; 2019 Apr 11; 97():325-335. PubMed ID: 30678918
    [Abstract] [Full Text] [Related]

  • 24. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration.
    Francis L, Venugopal J, Prabhakaran MP, Thavasi V, Marsano E, Ramakrishna S.
    Acta Biomater; 2010 Oct 11; 6(10):4100-9. PubMed ID: 20466085
    [Abstract] [Full Text] [Related]

  • 25. Osteoblast-derived extracellular matrix coated PLLA/silk fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells.
    Wu Y, Zhou L, Li Y, Lou X.
    J Biomed Mater Res A; 2022 Mar 11; 110(3):525-534. PubMed ID: 34494712
    [Abstract] [Full Text] [Related]

  • 26. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB, Arvidson K, Plikk P, Ibrahim S, Finne-Wistrand A, Albertsson AC, Bolstad AI, Mustafa K.
    J Biomed Mater Res A; 2010 Aug 11; 94(2):631-9. PubMed ID: 20205238
    [Abstract] [Full Text] [Related]

  • 27. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation.
    Seyedjafari E, Soleimani M, Ghaemi N, Shabani I.
    Biomacromolecules; 2010 Nov 08; 11(11):3118-25. PubMed ID: 20925348
    [Abstract] [Full Text] [Related]

  • 28. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X.
    Int J Nanomedicine; 2016 Nov 08; 11():1483-500. PubMed ID: 27114708
    [Abstract] [Full Text] [Related]

  • 29. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.
    Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, McKean R, Kamarul T.
    Colloids Surf B Biointerfaces; 2016 Mar 01; 139():68-78. PubMed ID: 26700235
    [Abstract] [Full Text] [Related]

  • 30. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S, Çakmak AS, Gümüşderelioğlu M.
    Biomed Mater; 2013 Aug 01; 8(4):045014. PubMed ID: 23860136
    [Abstract] [Full Text] [Related]

  • 31. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A.
    J Biomater Appl; 2019 Mar 01; 33(8):1128-1144. PubMed ID: 30651055
    [Abstract] [Full Text] [Related]

  • 32. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I.
    Qian Y, Chen H, Xu Y, Yang J, Zhou X, Zhang F, Gu N.
    Int J Nanomedicine; 2016 Mar 01; 11():4157-71. PubMed ID: 27601900
    [Abstract] [Full Text] [Related]

  • 33. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N, Wang M.
    Biofabrication; 2012 Mar 01; 4(1):015003. PubMed ID: 22258057
    [Abstract] [Full Text] [Related]

  • 34. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E.
    Biomed Mater; 2013 Aug 01; 8(4):045011. PubMed ID: 23804651
    [Abstract] [Full Text] [Related]

  • 35. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers.
    Chang W, Mu X, Zhu X, Ma G, Li C, Xu F, Nie J.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 01; 33(7):4369-76. PubMed ID: 23910355
    [Abstract] [Full Text] [Related]

  • 36. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.