These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 29076091

  • 1. Flow Cytometric Analysis of Erythroblast Enucleation.
    An X, Chen L.
    Methods Mol Biol; 2018; 1698():193-203. PubMed ID: 29076091
    [Abstract] [Full Text] [Related]

  • 2. Flow Cytometry (FCM) Analysis and Fluorescence-Activated Cell Sorting (FACS) of Erythroid Cells.
    An X, Chen L.
    Methods Mol Biol; 2018; 1698():153-174. PubMed ID: 29076089
    [Abstract] [Full Text] [Related]

  • 3. Identification of a murine erythroblast subpopulation enriched in enucleating events by multi-spectral imaging flow cytometry.
    Konstantinidis DG, Pushkaran S, Giger K, Manganaris S, Zheng Y, Kalfa TA.
    J Vis Exp; 2014 Jun 06; (88):. PubMed ID: 24962543
    [Abstract] [Full Text] [Related]

  • 4. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells.
    Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S.
    Nature; 2005 Sep 29; 437(7059):754-8. PubMed ID: 16193055
    [Abstract] [Full Text] [Related]

  • 5. Trim58 degrades Dynein and regulates terminal erythropoiesis.
    Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, Silva AP, Prabhu D, Yao Y, Aribeana C, Fuchs SY, Mackay JP, Holzbaur EL, Weiss MJ.
    Dev Cell; 2014 Sep 29; 30(6):688-700. PubMed ID: 25241935
    [Abstract] [Full Text] [Related]

  • 6. Delineating stages of erythropoiesis using imaging flow cytometry.
    McGrath KE, Catherman SC, Palis J.
    Methods; 2017 Jan 01; 112():68-74. PubMed ID: 27582124
    [Abstract] [Full Text] [Related]

  • 7. Erythroblast enucleation is a dynein-dependent process.
    Kobayashi I, Ubukawa K, Sugawara K, Asanuma K, Guo YM, Yamashita J, Takahashi N, Sawada K, Nunomura W.
    Exp Hematol; 2016 Apr 01; 44(4):247-56.e12. PubMed ID: 26724640
    [Abstract] [Full Text] [Related]

  • 8. Analysis of Erythropoiesis Using Imaging Flow Cytometry.
    Kalfa T, McGrath KE.
    Methods Mol Biol; 2018 Apr 01; 1698():175-192. PubMed ID: 29076090
    [Abstract] [Full Text] [Related]

  • 9. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver.
    Sui Z, Nowak RB, Bacconi A, Kim NE, Liu H, Li J, Wickrema A, An XL, Fowler VM.
    Blood; 2014 Jan 30; 123(5):758-67. PubMed ID: 24159174
    [Abstract] [Full Text] [Related]

  • 10. Flow cytometric-based isolation of nucleated erythroid cells during maturation: an approach to cell surface antigen studies.
    Fornas O, Domingo JC, Marin P, Petriz J.
    Cytometry; 2002 Dec 15; 50(6):305-12. PubMed ID: 12497592
    [Abstract] [Full Text] [Related]

  • 11. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation.
    Mei Y, Liu Y, Ji P.
    Blood Rev; 2021 Mar 15; 46():100740. PubMed ID: 32798012
    [Abstract] [Full Text] [Related]

  • 12. Signaling and cytoskeletal requirements in erythroblast enucleation.
    Konstantinidis DG, Pushkaran S, Johnson JF, Cancelas JA, Manganaris S, Harris CE, Williams DA, Zheng Y, Kalfa TA.
    Blood; 2012 Jun 21; 119(25):6118-27. PubMed ID: 22461493
    [Abstract] [Full Text] [Related]

  • 13. Protein distribution during human erythroblast enucleation in vitro.
    Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, Mushens R, Herman A, Toye AM.
    PLoS One; 2013 Jun 21; 8(4):e60300. PubMed ID: 23565219
    [Abstract] [Full Text] [Related]

  • 14. Cdc42 regulates cell polarization and contractile actomyosin rings during terminal differentiation of human erythroblasts.
    Ubukawa K, Goto T, Asanuma K, Sasaki Y, Guo YM, Kobayashi I, Sawada K, Wakui H, Takahashi N.
    Sci Rep; 2020 Jul 16; 10(1):11806. PubMed ID: 32678227
    [Abstract] [Full Text] [Related]

  • 15. A Chemical Screening Approach to Identify Novel Key Mediators of Erythroid Enucleation.
    Wölwer CB, Pase LB, Pearson HB, Gödde NJ, Lackovic K, Huang DC, Russell SM, Humbert PO.
    PLoS One; 2015 Jul 16; 10(11):e0142655. PubMed ID: 26569102
    [Abstract] [Full Text] [Related]

  • 16. Abnormal erythroid differentiation in neonatal bcl-6-deficient mice.
    Asari S, Sakamoto A, Okada S, Ohkubo Y, Arima M, Hatano M, Kuroda Y, Tokuhisa T.
    Exp Hematol; 2005 Jan 16; 33(1):26-34. PubMed ID: 15661395
    [Abstract] [Full Text] [Related]

  • 17. Transferrin receptor 1 is required for enucleation of mouse erythroblasts during terminal differentiation.
    Aoto M, Iwashita A, Mita K, Ohkubo N, Tsujimoto Y, Mitsuda N.
    FEBS Open Bio; 2019 Feb 16; 9(2):291-303. PubMed ID: 30761254
    [Abstract] [Full Text] [Related]

  • 18. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis.
    Satchwell TJ, Hawley BR, Bell AJ, Ribeiro ML, Toye AM.
    Haematologica; 2015 Jan 16; 100(1):133-42. PubMed ID: 25344524
    [Abstract] [Full Text] [Related]

  • 19. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2.
    Ji P, Jayapal SR, Lodish HF.
    Nat Cell Biol; 2008 Mar 16; 10(3):314-21. PubMed ID: 18264091
    [Abstract] [Full Text] [Related]

  • 20. Dynamics of human erythroblast enucleation.
    Hebiguchi M, Hirokawa M, Guo YM, Saito K, Wakui H, Komatsuda A, Fujishima N, Takahashi N, Takahashi T, Sasaki T, Nunomura W, Takakuwa Y, Sawada K.
    Int J Hematol; 2008 Dec 16; 88(5):498-507. PubMed ID: 19043811
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.