These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 29087704

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T, Tanaka Y, Hiraga K, Inui M, Yukawa H.
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D, Kim WJ, Yoo SM, Choi JH, Ha SH, Lee MH, Lee SY.
    Proc Natl Acad Sci U S A; 2018 Oct 02; 115(40):9835-9844. PubMed ID: 30232266
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Metabolic control analysis of L-tryptophan producing Escherichia coli applying targeted perturbation with shikimate.
    Schoppel K, Trachtmann N, Mittermeier F, Sprenger GA, Weuster-Botz D.
    Bioprocess Biosyst Eng; 2021 Dec 02; 44(12):2591-2613. PubMed ID: 34519841
    [Abstract] [Full Text] [Related]

  • 31. Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities.
    Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T.
    Front Bioeng Biotechnol; 2020 Dec 02; 8():569406. PubMed ID: 33015020
    [Abstract] [Full Text] [Related]

  • 32. Biosensor-guided improvements in salicylate production by recombinant Escherichia coli.
    Qian S, Li Y, Cirino PC.
    Microb Cell Fact; 2019 Jan 29; 18(1):18. PubMed ID: 30696431
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
    Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J.
    Metab Eng; 2012 Jul 29; 14(4):449-57. PubMed ID: 22583745
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.
    Kohl TA, Tauch A.
    J Biotechnol; 2009 Sep 25; 143(4):239-46. PubMed ID: 19665500
    [Abstract] [Full Text] [Related]

  • 37. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi.
    Henke NA, Göttl VL, Schmitt I, Peters-Wendisch P, Wendisch VF.
    Methods Enzymol; 2022 Sep 25; 671():383-419. PubMed ID: 35878987
    [Abstract] [Full Text] [Related]

  • 38. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum.
    Teramoto H, Inui M, Yukawa H.
    J Biotechnol; 2011 Jul 10; 154(2-3):114-25. PubMed ID: 21277916
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids.
    Yang J, Yang S.
    BMC Genomics; 2017 Jan 25; 18(Suppl 1):940. PubMed ID: 28198668
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.