These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. Mol Biol Evol; 2012 Nov; 29(11):3359-70. PubMed ID: 22628534 [Abstract] [Full Text] [Related]
23. Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Brutsaert TD, Kiyamu M, Elias Revollendo G, Isherwood JL, Lee FS, Rivera-Ch M, Leon-Velarde F, Ghosh S, Bigham AW. Proc Natl Acad Sci U S A; 2019 Nov 26; 116(48):24006-24011. PubMed ID: 31712437 [Abstract] [Full Text] [Related]
24. The genetic architecture of adaptations to high altitude in Ethiopia. Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. PLoS Genet; 2012 Nov 26; 8(12):e1003110. PubMed ID: 23236293 [Abstract] [Full Text] [Related]
25. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. Schweizer RM, Velotta JP, Ivy CM, Jones MR, Muir SM, Bradburd GS, Storz JF, Scott GR, Cheviron ZA. PLoS Genet; 2019 Nov 26; 15(11):e1008420. PubMed ID: 31697676 [Abstract] [Full Text] [Related]
26. Mitochondrial DNA 10609T promotes hypoxia-induced increase of intracellular ROS and is a risk factor of high altitude polycythemia. Jiang C, Cui J, Liu F, Gao L, Luo Y, Li P, Guan L, Gao Y. PLoS One; 2014 Nov 26; 9(1):e87775. PubMed ID: 24498190 [Abstract] [Full Text] [Related]
27. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Penaloza D, Arias-Stella J. Circulation; 2007 Mar 06; 115(9):1132-46. PubMed ID: 17339571 [Abstract] [Full Text] [Related]
28. Andean and Tibetan patterns of adaptation to high altitude. Bigham AW, Wilson MJ, Julian CG, Kiyamu M, Vargas E, Leon-Velarde F, Rivera-Chira M, Rodriquez C, Browne VA, Parra E, Brutsaert TD, Moore LG, Shriver MD. Am J Hum Biol; 2013 Mar 06; 25(2):190-7. PubMed ID: 23348729 [Abstract] [Full Text] [Related]
29. A novel candidate region for genetic adaptation to high altitude in Andean populations. Valverde G, Zhou H, Lippold S, de Filippo C, Tang K, López Herráez D, Li J, Stoneking M. PLoS One; 2015 Mar 06; 10(5):e0125444. PubMed ID: 25961286 [Abstract] [Full Text] [Related]
32. Genetics of human origin and evolution: high-altitude adaptations. Bigham AW. Curr Opin Genet Dev; 2016 Dec 06; 41():8-13. PubMed ID: 27501156 [Abstract] [Full Text] [Related]
33. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT. Proc Natl Acad Sci U S A; 2010 Jun 22; 107(25):11459-64. PubMed ID: 20534544 [Abstract] [Full Text] [Related]
34. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Childebayeva A, Jones TR, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. Epigenetics; 2019 Jan 22; 14(1):1-15. PubMed ID: 30574831 [Abstract] [Full Text] [Related]
35. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genome Biol Evol; 2024 Aug 05; 16(8):. PubMed ID: 39173139 [Abstract] [Full Text] [Related]
36. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Murray AJ, Montgomery HE, Feelisch M, Grocott MPW, Martin DS. Biochem Soc Trans; 2018 Jun 19; 46(3):599-607. PubMed ID: 29678953 [Abstract] [Full Text] [Related]
37. SENP1, but not fetal hemoglobin, differentiates Andean highlanders with chronic mountain sickness from healthy individuals among Andean highlanders. Hsieh MM, Callacondo D, Rojas-Camayo J, Quesada-Olarte J, Wang X, Uchida N, Maric I, Remaley AT, Leon-Velarde F, Villafuerte FC, Tisdale JF. Exp Hematol; 2016 Jun 19; 44(6):483-490.e2. PubMed ID: 26952840 [Abstract] [Full Text] [Related]
38. Abnormal energy regulation in early life: childhood gene expression may predict subsequent chronic mountain sickness. Huicho L, Xing G, Qualls C, Rivera-Ch M, Gamboa JL, Verma A, Appenzeller O. BMC Pediatr; 2008 Oct 27; 8():47. PubMed ID: 18954447 [Abstract] [Full Text] [Related]
39. Genetic determinants of Tibetan high-altitude adaptation. Simonson TS, McClain DA, Jorde LB, Prchal JT. Hum Genet; 2012 Apr 27; 131(4):527-33. PubMed ID: 22068265 [Abstract] [Full Text] [Related]
40. Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. Huerta-Sánchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T, Cardona A, Montgomery HE, Cavalleri GL, Robbins PA, Weale ME, Bradman N, Bekele E, Kivisild T, Tyler-Smith C, Nielsen R. Mol Biol Evol; 2013 Aug 27; 30(8):1877-88. PubMed ID: 23666210 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]