These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
491 related items for PubMed ID: 29100918
1. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC. Zhang S, Duan X. J Theor Biol; 2018 Jan 21; 437():239-250. PubMed ID: 29100918 [Abstract] [Full Text] [Related]
2. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC. Zhang S, Liang Y. J Theor Biol; 2018 Nov 14; 457():163-169. PubMed ID: 30179589 [Abstract] [Full Text] [Related]
3. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features. Li B, Cai L, Liao B, Fu X, Bing P, Yang J. Molecules; 2019 Mar 06; 24(5):. PubMed ID: 30845684 [Abstract] [Full Text] [Related]
4. Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou's general PseAAC. Shen Y, Tang J, Guo F. J Theor Biol; 2019 Feb 07; 462():230-239. PubMed ID: 30452958 [Abstract] [Full Text] [Related]
6. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. Ahmad K, Waris M, Hayat M. J Membr Biol; 2016 Jun 07; 249(3):293-304. PubMed ID: 26746980 [Abstract] [Full Text] [Related]
10. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. Rahman MS, Shatabda S, Saha S, Kaykobad M, Rahman MS. J Theor Biol; 2018 Sep 07; 452():22-34. PubMed ID: 29753757 [Abstract] [Full Text] [Related]
11. Subcellular localization prediction of apoptosis proteins based on evolutionary information and support vector machine. Xiang Q, Liao B, Li X, Xu H, Chen J, Shi Z, Dai Q, Yao Y. Artif Intell Med; 2017 May 07; 78():41-46. PubMed ID: 28764871 [Abstract] [Full Text] [Related]
12. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Li L, Yu S, Xiao W, Li Y, Li M, Huang L, Zheng X, Zhou S, Yang H. Biochimie; 2014 Sep 07; 104():100-7. PubMed ID: 24929100 [Abstract] [Full Text] [Related]
16. Predictions of Apoptosis Proteins by Integrating Different Features Based on Improving Pseudo-Position-Specific Scoring Matrix. Ruan X, Zhou D, Nie R, Guo Y. Biomed Res Int; 2020 Sep 07; 2020():4071508. PubMed ID: 32420339 [Abstract] [Full Text] [Related]
17. Prediction of Apoptosis Protein Subcellular Localization with Multilayer Sparse Coding and Oversampling Approach. Chen X, Hu X, Yi W, Zou X, Xue W. Biomed Res Int; 2019 Sep 07; 2019():2436924. PubMed ID: 30834257 [Abstract] [Full Text] [Related]
18. Predicting protein structural class by incorporating patterns of over-represented k-mers into the general form of Chou's PseAAC. Qin YF, Wang CH, Yu XQ, Zhu J, Liu TG, Zheng XQ. Protein Pept Lett; 2012 Apr 07; 19(4):388-97. PubMed ID: 22316305 [Abstract] [Full Text] [Related]
19. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. Han GS, Yu ZG, Anh V. J Theor Biol; 2014 Mar 07; 344():31-9. PubMed ID: 24316387 [Abstract] [Full Text] [Related]
20. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection. Jiao YS, Du PF. J Theor Biol; 2016 Aug 07; 402():38-44. PubMed ID: 27155042 [Abstract] [Full Text] [Related] Page: [Next] [New Search]