These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 2910815

  • 1. Regenerative electrical activity and arterial contraction in hypertensive rats.
    Lamb FS, Webb RC.
    Hypertension; 1989 Jan; 13(1):70-6. PubMed ID: 2910815
    [Abstract] [Full Text] [Related]

  • 2. Intracellular calcium stores and oscillatory contractions in arteries from genetically hypertensive rats.
    Tostes RC, Storm DS, Chi DH, Webb RC.
    Hypertens Res; 1996 Jun; 19(2):103-11. PubMed ID: 10968203
    [Abstract] [Full Text] [Related]

  • 3. Extracellular calcium, contractile activity and membrane potential in tail arteries from genetically hypertensive rats.
    Chai S, Webb RC.
    J Hypertens; 1992 Oct; 10(10):1137-43. PubMed ID: 1334994
    [Abstract] [Full Text] [Related]

  • 4. Potassium conductance and oscillatory contractions in tail arteries from genetically hypertensive rats.
    Lamb FS, Webb RC.
    J Hypertens; 1989 Jun; 7(6):457-63. PubMed ID: 2778313
    [Abstract] [Full Text] [Related]

  • 5. Norepinephrine-induced phasic activity in tail arteries from genetically hypertensive rats.
    Myers JH, Lamb FS, Webb RC.
    Am J Physiol; 1985 Mar; 248(3 Pt 2):H419-23. PubMed ID: 2579588
    [Abstract] [Full Text] [Related]

  • 6. Genetic association of hypertension and vascular changes in stroke-prone spontaneously hypertensive rats.
    Bruner CA, Myers JH, Sing CF, Jokelainen PT, Webb RC.
    Hypertension; 1986 Oct; 8(10):904-10. PubMed ID: 3759225
    [Abstract] [Full Text] [Related]

  • 7. Oscillatory contractions in tail arteries from genetically hypertensive rats.
    Lamb FS, Myers JH, Hamlin MN, Webb RC.
    Hypertension; 1985 Oct; 7(3 Pt 2):I25-30. PubMed ID: 3997233
    [Abstract] [Full Text] [Related]

  • 8. Effect of antihypertensive therapy on a vascular change in genetically hypertensive rats.
    Bruner CA, Webb RC.
    Clin Exp Hypertens A; 1987 Oct; 9(11):1745-62. PubMed ID: 3436074
    [Abstract] [Full Text] [Related]

  • 9. The role of gap junctional communication in contractile oscillations in arteries from normotensive and hypertensive rats.
    Tsai ML, Watts SW, Loch-Caruso R, Webb RC.
    J Hypertens; 1995 Oct; 13(10):1123-33. PubMed ID: 8586804
    [Abstract] [Full Text] [Related]

  • 10. Increased vascular reactivity to Bay K 8644 in genetic hypertension.
    Bruner CA, Webb RC.
    Pharmacology; 1990 Oct; 41(1):24-35. PubMed ID: 1700445
    [Abstract] [Full Text] [Related]

  • 11. Adrenal-dependent change in vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Bruner CA, Webb RC.
    Hypertension; 1988 Oct; 12(4):388-92. PubMed ID: 3169949
    [Abstract] [Full Text] [Related]

  • 12. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Kolias TJ, Chai S, Webb RC.
    Am J Hypertens; 1993 Jun; 6(6 Pt 1):528-33. PubMed ID: 8343237
    [Abstract] [Full Text] [Related]

  • 13. Effect of ramipril on alpha-adrenoceptor-mediated oscillatory contractions in tail artery of hypertensive rats.
    Watts SW, Traub O, Lamb FS, Myers JH, Webb RC.
    Eur J Pharmacol; 1993 Oct 05; 242(3):245-53. PubMed ID: 8281989
    [Abstract] [Full Text] [Related]

  • 14. Effect of felodipine on blood pressure and vascular reactivity in stroke-prone spontaneously hypertensive rats.
    Bruner CA, Webb RC.
    J Hypertens; 1989 Jan 05; 7(1):31-5. PubMed ID: 2708810
    [Abstract] [Full Text] [Related]

  • 15. Enhanced vascular reactivity to protein kinase C activators in genetically hypertensive rats.
    Turla MB, Webb RC.
    Hypertension; 1987 Jun 05; 9(6 Pt 2):III150-4. PubMed ID: 3596782
    [Abstract] [Full Text] [Related]

  • 16. Differences between the in vitro vasoconstrictor responses of the tail artery to potassium and norepinephrine between spontaneously hypertensive, renovascular hypertensive, and various strains of normotensive rats.
    Fouda AK, Capdeville C, Henrion D, Thorin-Trescases N, Thorin E, Atkinson J.
    J Pharmacol Methods; 1991 Mar 05; 25(1):61-8. PubMed ID: 2030587
    [Abstract] [Full Text] [Related]

  • 17. Impaired potentiation by endothelin-1 and vasopressin of sympathetic contraction in tail artery from hypertensive rats.
    García-Villalón AL, Monge L, Fernández N, Sánchez MA, Martínez MA, Gómez B, Diéguez G.
    Cardiovasc Res; 2000 Jan 14; 45(2):463-9. PubMed ID: 10728367
    [Abstract] [Full Text] [Related]

  • 18. Increased Ca2+ sensitivity of alpha 1-adrenoceptor-stimulated contraction in SHR caudal artery.
    Aqel MB, Sharma RV, Bhalla RC.
    Am J Physiol; 1986 Feb 14; 250(2 Pt 1):C275-82. PubMed ID: 2420189
    [Abstract] [Full Text] [Related]

  • 19. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats.
    Salomone S, Morel N, Godfraind T.
    Br J Pharmacol; 1997 Jul 14; 121(6):1051-8. PubMed ID: 9249238
    [Abstract] [Full Text] [Related]

  • 20. Characterization of 5-hydroxytryptamine receptors mediating contractions in basilar arteries from stroke-prone spontaneously hypertensive rats.
    Nishimura Y.
    Br J Pharmacol; 1996 Mar 14; 117(6):1325-1333. PubMed ID: 8882632
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.