These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 29111555
1. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Liu KK, Tadepalli S, Wang Z, Jiang Q, Singamaneni S. Analyst; 2017 Nov 20; 142(23):4536-4543. PubMed ID: 29111555 [Abstract] [Full Text] [Related]
2. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. Singh P, König TAF, Jaiswal A. ACS Appl Mater Interfaces; 2018 Nov 14; 10(45):39380-39390. PubMed ID: 30345737 [Abstract] [Full Text] [Related]
3. Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering. Jaiswal A, Tian L, Tadepalli S, Liu KK, Fei M, Farrell ME, Pellegrino PM, Singamaneni S. Small; 2014 Nov 12; 10(21):4287-92. PubMed ID: 25045064 [Abstract] [Full Text] [Related]
4. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance. Šubr M, Kuzminova A, Kylián O, Procházka M. Spectrochim Acta A Mol Biomol Spectrosc; 2018 May 15; 197():202-207. PubMed ID: 29398590 [Abstract] [Full Text] [Related]
5. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH, You MH, Kim GH, Nam JM. Nano Lett; 2014 Nov 12; 14(11):6217-25. PubMed ID: 25275930 [Abstract] [Full Text] [Related]
6. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability. Yang Y, Zhang Q, Fu ZW, Qin D. ACS Appl Mater Interfaces; 2014 Mar 12; 6(5):3750-7. PubMed ID: 24476231 [Abstract] [Full Text] [Related]
7. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Wei X, Fan Q, Liu H, Bai Y, Zhang L, Zheng H, Yin Y, Gao C. Nanoscale; 2016 Aug 25; 8(34):15689-95. PubMed ID: 27524663 [Abstract] [Full Text] [Related]
9. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Zheng P, Cushing SK, Suri S, Wu N. Phys Chem Chem Phys; 2015 Sep 07; 17(33):21211-9. PubMed ID: 25586930 [Abstract] [Full Text] [Related]
10. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch. Gupta P, Luan J, Wang Z, Cao S, Bae SH, Naik RR, Singamaneni S. ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):37939-37946. PubMed ID: 31525866 [Abstract] [Full Text] [Related]
11. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Hu F, Zhang Y, Chen G, Li C, Wang Q. Small; 2015 Feb 25; 11(8):985-93. PubMed ID: 25348096 [Abstract] [Full Text] [Related]
12. Palladium-rich plasmonic nanorattles with enhanced LSPRs via successive galvanic replacement mediated by co-reduction. Ivanchenko M, Evangelista AJ, Jing H. RSC Adv; 2021 Dec 13; 11(63):40112-40119. PubMed ID: 35494128 [Abstract] [Full Text] [Related]
13. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection. Gomez-Cruz J, Bdour Y, Stamplecoskie K, Escobedo C. Biosensors (Basel); 2022 Feb 17; 12(2):. PubMed ID: 35200388 [Abstract] [Full Text] [Related]
14. Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. Wang Q, Wang J, Li M, Ge Z, Zhang X, Luan L, Li P, Xu W. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar 05; 248():119131. PubMed ID: 33279408 [Abstract] [Full Text] [Related]
15. Self-Assembly of Au-Ag Alloy Hollow Nanochains for Enhanced Plasmon-Driven Surface-Enhanced Raman Scattering. Liu W, Zhang J, Hou J, Aziguli H, Zhang Q, Jiang H. Nanomaterials (Basel); 2022 Apr 07; 12(8):. PubMed ID: 35457952 [Abstract] [Full Text] [Related]
16. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film. Li K, Jiang K, Zhang L, Wang Y, Mao L, Zeng J, Lu Y, Wang P. Nanotechnology; 2016 Apr 22; 27(16):165401. PubMed ID: 26939539 [Abstract] [Full Text] [Related]
17. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. Lee HK, Lee YH, Zhang Q, Phang IY, Tan JM, Cui Y, Ling XY. ACS Appl Mater Interfaces; 2013 Nov 13; 5(21):11409-18. PubMed ID: 24134617 [Abstract] [Full Text] [Related]
19. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array. Wei S, Zheng M, Xiang Q, Hu H, Duan H. Opt Express; 2016 Sep 05; 24(18):20613-20. PubMed ID: 27607665 [Abstract] [Full Text] [Related]
20. Localized surface plasmon resonance spectroscopy and sensing. Willets KA, Van Duyne RP. Annu Rev Phys Chem; 2007 Sep 05; 58():267-97. PubMed ID: 17067281 [Abstract] [Full Text] [Related] Page: [Next] [New Search]