These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


328 related items for PubMed ID: 29122192

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Effects of a passive upper-body exoskeleton on whole-body kinematics, leg muscle activity, and discomfort during a carrying task.
    Garcia G, Arauz PG, Alvarez I, Encalada N, Vega S, Baldo M, Martin BJ.
    PLoS One; 2024; 19(7):e0304606. PubMed ID: 38990910
    [Abstract] [Full Text] [Related]

  • 44. [Analysis of the electromyographic characteristics on shoulder fatigue caused by lifting load].
    Zhao PF, Ma Q, Chen XW, Zhang K, Ai TT, Man ZM.
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jul; 30(7):501-3. PubMed ID: 22931815
    [Abstract] [Full Text] [Related]

  • 45. Effect of mechanical compression due to load carrying on shoulder muscle fatigue during sustained isometric arm abduction: an electromyographic study.
    Piscione J, Gamet D.
    Eur J Appl Physiol; 2006 Jul; 97(5):573-81. PubMed ID: 16767438
    [Abstract] [Full Text] [Related]

  • 46. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics.
    Schiebl J, Tröster M, Idoudi W, Gneiting E, Spies L, Maufroy C, Schneider U, Bauernhansl T.
    Int J Environ Res Public Health; 2022 Nov 23; 19(23):. PubMed ID: 36497613
    [Abstract] [Full Text] [Related]

  • 47. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T, Colienne A, Bywater E, Fritzsche L, Gärtner C, Bellmann M, Reimer S, Ernst M.
    IISE Trans Occup Ergon Hum Factors; 2022 Nov 23; 10(1):7-20. PubMed ID: 34763618
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females.
    McFarland TC, McDonald AC, Whittaker RL, Callaghan JP, Dickerson CR.
    Appl Ergon; 2022 Jan 23; 98():103591. PubMed ID: 34628044
    [Abstract] [Full Text] [Related]

  • 59. Arm-support exoskeleton reduces shoulder muscle activity in ceiling construction.
    Baltrusch SJ, Krause F, de Vries AW, de Looze MP.
    Ergonomics; 2024 Aug 23; 67(8):1051-1063. PubMed ID: 37938880
    [Abstract] [Full Text] [Related]

  • 60. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.
    Srinivasan D, Mathiassen SE, Hallman DM, Samani A, Madeleine P, Lyskov E.
    Eur J Appl Physiol; 2016 Jan 23; 116(1):227-39. PubMed ID: 26403235
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.