These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 29124514

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Rewiring metabolism of Clostridium thermocellum for consolidated bioprocessing of lignocellulosic biomass poplar to produce short-chain esters.
    Seo H, Singh P, Wyman CE, Cai CM, Trinh CT.
    Bioresour Technol; 2023 Sep; 384():129263. PubMed ID: 37271458
    [Abstract] [Full Text] [Related]

  • 6. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR.
    PLoS One; 2009 Sep; 4(4):e5271. PubMed ID: 19384422
    [Abstract] [Full Text] [Related]

  • 7. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT.
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [Abstract] [Full Text] [Related]

  • 8. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose.
    Mazzoli R, Olson DG.
    Adv Appl Microbiol; 2020 Nov; 113():111-161. PubMed ID: 32948265
    [Abstract] [Full Text] [Related]

  • 9. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.
    Herring CD, Thorne PG, Lynd LR.
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2907-15. PubMed ID: 26762388
    [Abstract] [Full Text] [Related]

  • 10. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways.
    van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, Guss AM, Lynd LR.
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):725-34. PubMed ID: 23645383
    [Abstract] [Full Text] [Related]

  • 11. The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum.
    Verbeke TJ, Garcia GM, Elkins JG.
    Biotechnol Biofuels; 2017 Jul; 10():233. PubMed ID: 29213307
    [Abstract] [Full Text] [Related]

  • 12. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.
    Biswas R, Prabhu S, Lynd LR, Guss AM.
    PLoS One; 2014 Jul; 9(2):e86389. PubMed ID: 24516531
    [Abstract] [Full Text] [Related]

  • 13. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum.
    Kothari N, Holwerda EK, Cai CM, Kumar R, Wyman CE.
    Biotechnol Biofuels; 2018 Jul; 11():219. PubMed ID: 30087696
    [Abstract] [Full Text] [Related]

  • 14. Development of a quantitative real-time PCR assay for direct detection of growth of cellulose-degrading bacterium Clostridium thermocellum in lignocellulosic degradation.
    Tang H, Ou JF, Zhu MJ.
    J Appl Microbiol; 2015 Jun; 118(6):1333-44. PubMed ID: 25801786
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach.
    Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ, Fu C, Wang ZY, Hamilton-Brehm SD, Mielenz JR.
    Biotechnol Biofuels; 2012 Nov 12; 5(1):81. PubMed ID: 23146305
    [Abstract] [Full Text] [Related]

  • 16. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Lo J, Zheng T, Hon S, Olson DG, Lynd LR.
    J Bacteriol; 2015 Apr 12; 197(8):1386-93. PubMed ID: 25666131
    [Abstract] [Full Text] [Related]

  • 17. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W, Reyes LH, Michener WE, Maness PC, Chou KJ.
    Biotechnol Bioeng; 2018 Jul 12; 115(7):1755-1763. PubMed ID: 29537062
    [Abstract] [Full Text] [Related]

  • 18. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.
    Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR.
    J Ind Microbiol Biotechnol; 2017 Jun 12; 44(6):825-834. PubMed ID: 28181082
    [Abstract] [Full Text] [Related]

  • 19. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles.
    Daley SR, Kirby S, Sparling R.
    Can J Microbiol; 2024 Sep 01; 70(9):370-383. PubMed ID: 38832648
    [Abstract] [Full Text] [Related]

  • 20. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Beri D, Olson DG, Holwerda EK, Lynd LR.
    FEMS Microbiol Lett; 2016 Jun 01; 363(11):. PubMed ID: 27190292
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.