These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


446 related items for PubMed ID: 29126085

  • 21. Evolution and Expression of Tissue Globins in Ray-Finned Fishes.
    Gallagher MD, Macqueen DJ.
    Genome Biol Evol; 2017 Jan 01; 9(1):32-47. PubMed ID: 28173090
    [Abstract] [Full Text] [Related]

  • 22. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio).
    Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM.
    BMC Evol Biol; 2012 Jul 09; 12():112. PubMed ID: 22776158
    [Abstract] [Full Text] [Related]

  • 23. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes.
    Karanth S, Lall SP, Denovan-Wright EM, Wright JM.
    BMC Evol Biol; 2009 Sep 02; 9():219. PubMed ID: 19725974
    [Abstract] [Full Text] [Related]

  • 24. Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications.
    Lai YY, Lubieniecki KP, Koop BF, Davidson WS.
    Gene; 2012 Aug 10; 504(2):253-61. PubMed ID: 22575613
    [Abstract] [Full Text] [Related]

  • 25. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N, Hoegg S, Salzburger W, Braasch I, Meyer A.
    BMC Genomics; 2007 Sep 06; 8():312. PubMed ID: 17822543
    [Abstract] [Full Text] [Related]

  • 26. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y, Hashiguchi Y, Nishida M.
    BMC Evol Biol; 2009 Jun 05; 9():127. PubMed ID: 19500364
    [Abstract] [Full Text] [Related]

  • 27. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.
    Cardoso JC, Bergqvist CA, Félix RC, Larhammar D.
    J Mol Endocrinol; 2016 Jul 05; 57(1):73-86. PubMed ID: 27220618
    [Abstract] [Full Text] [Related]

  • 28. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I, Salzburger W, Meyer A.
    Mol Biol Evol; 2006 Jun 05; 23(6):1192-202. PubMed ID: 16547150
    [Abstract] [Full Text] [Related]

  • 29. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E, Brunet F, Naville M, Volff JN, Galiana D.
    PLoS One; 2017 Jun 05; 12(7):e0180936. PubMed ID: 28738066
    [Abstract] [Full Text] [Related]

  • 30. Evolution of IFN subgroups in bony fish - 1:Group I-III IFN exist in early ray-finned fish, with group II IFN subgroups present in the Holostean spotted gar, Lepisosteus oculatus.
    Liu F, Bols NC, Pham PH, Secombes CJ, Zou J.
    Fish Shellfish Immunol; 2019 Dec 05; 95():163-170. PubMed ID: 31626921
    [Abstract] [Full Text] [Related]

  • 31. Rapidly evolving fish genomes and teleost diversity.
    Ravi V, Venkatesh B.
    Curr Opin Genet Dev; 2008 Dec 05; 18(6):544-50. PubMed ID: 19095434
    [Abstract] [Full Text] [Related]

  • 32. A second corticotropin-releasing hormone gene (CRH2) is conserved across vertebrate classes and expressed in the hindbrain of a basal neopterygian fish, the spotted gar (Lepisosteus oculatus).
    Grone BP, Maruska KP.
    J Comp Neurol; 2015 May 01; 523(7):1125-43. PubMed ID: 25521515
    [Abstract] [Full Text] [Related]

  • 33. A chromosome-level genome assembly of longnose gar, Lepisosteus osseus.
    Mallik R, Carlson KB, Wcisel DJ, Fisk M, Yoder JA, Dornburg A.
    G3 (Bethesda); 2023 Jul 05; 13(7):. PubMed ID: 37119803
    [Abstract] [Full Text] [Related]

  • 34. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.
    Davesne D, Friedman M, Schmitt AD, Fernandez V, Carnevale G, Ahlberg PE, Sanchez S, Benson RBJ.
    Proc Natl Acad Sci U S A; 2021 Jul 27; 118(30):. PubMed ID: 34301898
    [Abstract] [Full Text] [Related]

  • 35. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B.
    J Mol Evol; 2017 Jun 27; 84(5-6):253-258. PubMed ID: 28492966
    [Abstract] [Full Text] [Related]

  • 36. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.
    Lagman D, Ocampo Daza D, Widmark J, Abalo XM, Sundström G, Larhammar D.
    BMC Evol Biol; 2013 Nov 02; 13():238. PubMed ID: 24180662
    [Abstract] [Full Text] [Related]

  • 37. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand.
    Cardoso JC, Félix RC, Trindade M, Power DM.
    Gen Comp Endocrinol; 2014 Dec 01; 209():82-92. PubMed ID: 24906176
    [Abstract] [Full Text] [Related]

  • 38. Subfunctionalization of peroxisome proliferator response elements accounts for retention of duplicated fabp1 genes in zebrafish.
    Laprairie RB, Denovan-Wright EM, Wright JM.
    BMC Evol Biol; 2016 Jul 16; 16(1):147. PubMed ID: 27421266
    [Abstract] [Full Text] [Related]

  • 39. Evidence for a divergence in function between two glucocorticoid receptors from a basal teleost.
    Li Y, Sturm A, Cunningham P, Bury NR.
    BMC Evol Biol; 2012 Aug 03; 12():137. PubMed ID: 22862956
    [Abstract] [Full Text] [Related]

  • 40. New genomic and fossil data illuminate the origin of enamel.
    Qu Q, Haitina T, Zhu M, Ahlberg PE.
    Nature; 2015 Oct 01; 526(7571):108-11. PubMed ID: 26416752
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.