These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. Gao YD, Hu Y, Crespo A, Wang D, Armacost KA, Fells JI, Fradera X, Wang H, Wang H, Sherborne B, Verras A, Peng Z. J Comput Aided Mol Des; 2018 Jan; 32(1):129-142. PubMed ID: 28986733 [Abstract] [Full Text] [Related]
14. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2. Kadukova M, Grudinin S. J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782 [Abstract] [Full Text] [Related]
16. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2. Salmaso V, Sturlese M, Cuzzolin A, Moro S. J Comput Aided Mol Des; 2018 Jan; 32(1):251-264. PubMed ID: 28840418 [Abstract] [Full Text] [Related]
18. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study. Réau M, Langenfeld F, Zagury JF, Montes M. J Comput Aided Mol Des; 2018 Jan; 32(1):231-238. PubMed ID: 28913743 [Abstract] [Full Text] [Related]
19. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges. Nguyen DD, Cang Z, Wu K, Wang M, Cao Y, Wei GW. J Comput Aided Mol Des; 2019 Jan; 33(1):71-82. PubMed ID: 30116918 [Abstract] [Full Text] [Related]