These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


413 related items for PubMed ID: 29130568

  • 21. Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi.
    Gorphe P, Von Tan J, El Bedoui S, Hartl DM, Auperin A, Qassemyar Q, Moya-Plana A, Janot F, Julieron M, Temam S.
    J Robot Surg; 2017 Dec; 11(4):455-461. PubMed ID: 28064382
    [Abstract] [Full Text] [Related]

  • 22. Next-Generation Robotic Head and Neck Surgery.
    Orosco RK, Arora A, Jeannon JP, Holsinger FC.
    ORL J Otorhinolaryngol Relat Spec; 2018 Dec; 80(3-4):213-219. PubMed ID: 30404095
    [Abstract] [Full Text] [Related]

  • 23. Transoral robotic surgery in the seated position: Rethinking our operative approach.
    Moore EJ, Van Abel KM, Olsen KD.
    Laryngoscope; 2017 Jan; 127(1):122-126. PubMed ID: 27377239
    [Abstract] [Full Text] [Related]

  • 24. Single-Port Versus Multiport da Vinci System for Transoral Robotic Surgery of Hypopharyngeal and Laryngeal Carcinoma.
    Sampieri C, Pirola F, Costantino A, Kim D, Ho JJ, Lee K, De Virgilio A, Park YM, Kim SH.
    Otolaryngol Head Neck Surg; 2023 Sep; 169(3):548-555. PubMed ID: 36939577
    [Abstract] [Full Text] [Related]

  • 25. Robotic Head and Neck Surgery: History, Technical Evolution and the Future.
    Garas G, Arora A.
    ORL J Otorhinolaryngol Relat Spec; 2018 Sep; 80(3-4):117-124. PubMed ID: 29925061
    [Abstract] [Full Text] [Related]

  • 26. Transoral Thyroidectomy Using A Flexible Robotic System: A Preclinical Cadaver Feasibility Study.
    Cottrill EE, Funk EK, Goldenberg D, Goyal N.
    Laryngoscope; 2019 Jun; 129(6):1482-1487. PubMed ID: 30284264
    [Abstract] [Full Text] [Related]

  • 27. Load evaluation of the da Vinci surgical system for transoral robotic surgery.
    Fujiwara K, Fukuhara T, Niimi K, Sato T, Kitano H.
    J Robot Surg; 2015 Dec; 9(4):315-9. PubMed ID: 26530845
    [Abstract] [Full Text] [Related]

  • 28. [Advances in transoral robotic surgery].
    Mattheis S, Kansy B, Haßkamp P, Holtmann L, Lang S.
    HNO; 2015 Nov; 63(11):752-7. PubMed ID: 26449670
    [Abstract] [Full Text] [Related]

  • 29. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery.
    Li C, Gu X, Xiao X, Lim CM, Ren H.
    Med Biol Eng Comput; 2020 Sep; 58(9):2063-2069. PubMed ID: 32642908
    [Abstract] [Full Text] [Related]

  • 30. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery.
    Chan JYK, Wong EWY, Tsang RK, Holsinger FC, Tong MCF, Chiu PWY, Ng SSM.
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3993-3996. PubMed ID: 28871410
    [Abstract] [Full Text] [Related]

  • 31. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery.
    Chan JYK, Tsang RK, Holsinger FC, Tong MCF, Ng CWK, Chiu PWY, Ng SSM, Wong EWY.
    Oral Oncol; 2019 Jul; 94():101-105. PubMed ID: 31178203
    [Abstract] [Full Text] [Related]

  • 32. Transoral robot-assisted carbon dioxide laser surgery for hypopharyngeal cancer.
    Kucur C, Durmus K, Dziegielewski PT, Ozer E.
    Head Neck; 2015 May; 37(5):743-5. PubMed ID: 25224300
    [Abstract] [Full Text] [Related]

  • 33. Transoral robotic surgery for the treatment of laryngeal chondrosarcoma: A case report.
    Guthrie AJ, Chai RL.
    Am J Otolaryngol; 2018 May; 39(3):352-354. PubMed ID: 29519647
    [Abstract] [Full Text] [Related]

  • 34. A transoral highly flexible robot: Novel technology and application.
    Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H, Zenati M, Tully S, Duvvuri U.
    Laryngoscope; 2012 May; 122(5):1067-71. PubMed ID: 22447466
    [Abstract] [Full Text] [Related]

  • 35. Preclinical cadaveric study of transanal robotic proctectomy with total mesorectal excision combined with laparoscopic assistance.
    Gomez Ruiz M, Martin Parra I, Calleja Iglesias A, Stein H, Sprinkle S, Manuel Palazuelos C, Alonso Martin J, Cagigas Fernandez C, Castillo Diego J, Gomez Fleitas M.
    Int J Med Robot; 2015 Jun; 11(2):188-93. PubMed ID: 24574007
    [Abstract] [Full Text] [Related]

  • 36. Potential Advantages of a Single-Port, Operator-Controlled Flexible Endoscope System for Transoral Surgery of the Larynx.
    Friedrich DT, Scheithauer MO, Greve J, Duvvuri U, Sommer F, Hoffmann TK, Schuler PJ.
    Ann Otol Rhinol Laryngol; 2015 Aug; 124(8):655-62. PubMed ID: 25757631
    [Abstract] [Full Text] [Related]

  • 37. Transoral robotic vertical partial laryngectomy (hemilaryngectomy) extended to the hypopharynx.
    Meliante PG, Battilocchi L, Costantino A, Lee K, Moon SJ, Ralli M, Minni A, Capaccio P, Pignataro L, de Vincentiis M, Kim SH.
    Head Neck; 2024 Mar; 46(3):708-712. PubMed ID: 38221740
    [Abstract] [Full Text] [Related]

  • 38. Transoral robotic study of the vascular anatomy of the head and neck.
    Goyal N, Setabutr D, Goldenberg D.
    J Robot Surg; 2014 Mar; 8(1):57-61. PubMed ID: 27637240
    [Abstract] [Full Text] [Related]

  • 39. Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma.
    Patsias A, Giraldez-Rodriguez L, Polydorides AD, Richards-Kortum R, Anandasabapathy S, Quang T, Sikora AG, Miles B.
    Head Neck; 2015 Aug; 37(8):E99-102. PubMed ID: 25327825
    [Abstract] [Full Text] [Related]

  • 40. Clinical outcomes of transoral robotic surgery for head and neck tumors.
    Park YM, Kim WS, Byeon HK, De Virgilio A, Lee SY, Kim SH.
    Ann Otol Rhinol Laryngol; 2013 Feb; 122(2):73-84. PubMed ID: 23534121
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.