These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 29135243
1. Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH. Peng D, Yang J, Li J, Tang C, Li B. J Agric Food Chem; 2017 Dec 06; 65(48):10658-10665. PubMed ID: 29135243 [Abstract] [Full Text] [Related]
2. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces. Rühs PA, Scheuble N, Windhab EJ, Mezzenga R, Fischer P. Langmuir; 2012 Aug 28; 28(34):12536-43. PubMed ID: 22857147 [Abstract] [Full Text] [Related]
3. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Schmitt C, da Silva TP, Bovay C, Rami-Shojaei S, Frossard P, Kolodziejczyk E, Leser ME. Langmuir; 2005 Aug 16; 21(17):7786-95. PubMed ID: 16089384 [Abstract] [Full Text] [Related]
7. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology. Engelhardt K, Lexis M, Gochev G, Konnerth C, Miller R, Willenbacher N, Peukert W, Braunschweig B. Langmuir; 2013 Sep 17; 29(37):11646-55. PubMed ID: 23961700 [Abstract] [Full Text] [Related]
8. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface. Lajnaf R, Picart-Palmade L, Attia H, Marchesseau S, Ayadi MA. Colloids Surf B Biointerfaces; 2017 Mar 01; 151():287-294. PubMed ID: 28038415 [Abstract] [Full Text] [Related]
10. Interfacial and foaming properties of sulfydryl-modified bovine beta-lactoglobulin. Croguennec T, Renault A, Bouhallab S, Pezennec S. J Colloid Interface Sci; 2006 Oct 01; 302(1):32-9. PubMed ID: 16876179 [Abstract] [Full Text] [Related]
11. Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces. Schestkowa H, Wollborn T, Westphal A, Maria Wagemans A, Fritsching U, Drusch S. J Colloid Interface Sci; 2019 Feb 15; 536():300-309. PubMed ID: 30380430 [Abstract] [Full Text] [Related]
12. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces. Dan A, Gochev G, Miller R. J Colloid Interface Sci; 2015 Jul 01; 449():383-91. PubMed ID: 25666640 [Abstract] [Full Text] [Related]
14. Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein. Dokouhaki M, Prime EL, Qiao GG, Kasapis S, Day L, Gras SL. Int J Biol Macromol; 2020 Feb 01; 144():742-750. PubMed ID: 31837361 [Abstract] [Full Text] [Related]
16. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Zhang Z, Dalgleish DG, Goff HD. Colloids Surf B Biointerfaces; 2004 Mar 15; 34(2):113-21. PubMed ID: 15261081 [Abstract] [Full Text] [Related]
17. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Rippner Blomqvist B, Ridout MJ, Mackie AR, Wärnheim T, Claesson PM, Wilde P. Langmuir; 2004 Nov 09; 20(23):10150-8. PubMed ID: 15518507 [Abstract] [Full Text] [Related]