These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 29135657

  • 1. Adapted Sojourn Models to Estimate Activity Intensity in Youth: A Suite of Tools.
    Hibbing PR, Ellingson LD, Dixon PM, Welk GJ.
    Med Sci Sports Exerc; 2018 Apr; 50(4):846-854. PubMed ID: 29135657
    [Abstract] [Full Text] [Related]

  • 2. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK, Clevenger KA, Pfeiffer KA, Nelson MB, Bock JM, Imboden MT, Kaminsky LA.
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [Abstract] [Full Text] [Related]

  • 3. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G.
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [Abstract] [Full Text] [Related]

  • 4. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG, Gilson ND, Gomersall SR, Clark B, Trost SG.
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [Abstract] [Full Text] [Related]

  • 5. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK, Westgate BS, Fonley MR, Pfeiffer KA.
    J Appl Physiol (1985); 2018 May 01; 124(5):1284-1293. PubMed ID: 29369742
    [Abstract] [Full Text] [Related]

  • 6. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R, Höchsmann C, Infanger D, Hinrichs T, Schmidt-Trucksäss A.
    BMC Public Health; 2019 Feb 28; 19(1):244. PubMed ID: 30819148
    [Abstract] [Full Text] [Related]

  • 7. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
    Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR.
    J Sci Med Sport; 2017 Dec 28; 20(12):1101-1106. PubMed ID: 28501418
    [Abstract] [Full Text] [Related]

  • 8. Examination of different accelerometer cut-points for assessing sedentary behaviors in children.
    Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ.
    PLoS One; 2014 Dec 28; 9(4):e90630. PubMed ID: 24699259
    [Abstract] [Full Text] [Related]

  • 9. Using Activity Monitors to Measure Sit-to-Stand Transitions in Overweight/Obese Youth.
    Mitchell T, Borner K, Finch J, Kerr J, Carlson JA.
    Med Sci Sports Exerc; 2017 Aug 28; 49(8):1592-1598. PubMed ID: 28288011
    [Abstract] [Full Text] [Related]

  • 10. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children.
    Clevenger KA, Pfeiffer KA, Mackintosh KA, McNarry MA, Brønd J, Arvidsson D, Montoye AHK.
    Physiol Meas; 2019 Sep 30; 40(9):095008. PubMed ID: 31518999
    [Abstract] [Full Text] [Related]

  • 11. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches.
    Bakrania K, Yates T, Rowlands AV, Esliger DW, Bunnewell S, Sanders J, Davies M, Khunti K, Edwardson CL.
    PLoS One; 2016 Sep 30; 11(10):e0164045. PubMed ID: 27706241
    [Abstract] [Full Text] [Related]

  • 12. Wrist-specific accelerometry methods for estimating free-living physical activity.
    Kingsley MIC, Nawaratne R, O'Halloran PD, Montoye AHK, Alahakoon D, De Silva D, Staley K, Nicholson M.
    J Sci Med Sport; 2019 Jun 30; 22(6):677-683. PubMed ID: 30558904
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comparison of physical activity assessed using hip- and wrist-worn accelerometers.
    Kamada M, Shiroma EJ, Harris TB, Lee IM.
    Gait Posture; 2016 Feb 30; 44():23-8. PubMed ID: 27004628
    [Abstract] [Full Text] [Related]

  • 15. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG, Cliff DP, Ahmadi MN, Tuc NV, Hagenbuchner M.
    Med Sci Sports Exerc; 2018 Mar 30; 50(3):634-641. PubMed ID: 29059107
    [Abstract] [Full Text] [Related]

  • 16. Individual versus Group Calibration of Machine Learning Models for Physical Activity Assessment Using Body-Worn Accelerometers.
    Montoye AHK, Westgate BS, Clevenger KA, Pfeiffer KA, Vondrasek JD, Fonley MR, Bock JM, Kaminsky LA.
    Med Sci Sports Exerc; 2021 Dec 01; 53(12):2691-2701. PubMed ID: 34310493
    [Abstract] [Full Text] [Related]

  • 17. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE, Hickey AM, Staudenmayer JW, John D, Kent JA, Freedson PS.
    Med Sci Sports Exerc; 2016 May 01; 48(5):941-50. PubMed ID: 26673129
    [Abstract] [Full Text] [Related]

  • 18. Calibration and Validation of a Wrist- and Hip-Worn Actigraph Accelerometer in 4-Year-Old Children.
    Johansson E, Larisch LM, Marcus C, Hagströmer M.
    PLoS One; 2016 May 01; 11(9):e0162436. PubMed ID: 27617962
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of raw acceleration sedentary thresholds in children and adults.
    Hildebrand M, Hansen BH, van Hees VT, Ekelund U.
    Scand J Med Sci Sports; 2017 Dec 01; 27(12):1814-1823. PubMed ID: 27878845
    [Abstract] [Full Text] [Related]

  • 20. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
    Tracy DJ, Xu Z, Choi L, Acra S, Chen KY, Buchowski MS.
    PLoS One; 2014 Dec 01; 9(4):e92512. PubMed ID: 24727999
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.