These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


684 related items for PubMed ID: 29153171

  • 21. Relationship between mastitis pathogen numbers in bulk tank milk and bovine udder infections in California dairy herds.
    Gonzalez RN, Jasper DE, Bushnell RB, Farver TB.
    J Am Vet Med Assoc; 1986 Aug 15; 189(4):442-5. PubMed ID: 3531123
    [Abstract] [Full Text] [Related]

  • 22. Controlling highly prevalent Staphylococcus aureus mastitis from the dairy farm.
    Nagahata H, Ito H, Maruta H, Nishikawa Y, Susukino H, Matsuki S, Higuchi H, Okuhira T, Anri A.
    J Vet Med Sci; 2007 Sep 15; 69(9):893-8. PubMed ID: 17917373
    [Abstract] [Full Text] [Related]

  • 23. Post-milking teat dip use in dairy herds with high or low somatic cell counts.
    Erskine RJ, Eberhart RJ.
    J Am Vet Med Assoc; 1991 Dec 15; 199(12):1734-6. PubMed ID: 1813466
    [Abstract] [Full Text] [Related]

  • 24. Pathogen group specific risk factors for clinical mastitis, intramammary infection and blind quarters at the herd, cow and quarter level in smallholder dairy farms in Jimma, Ethiopia.
    Tolosa T, Verbeke J, Ayana Z, Piepers S, Supré K, De Vliegher S.
    Prev Vet Med; 2015 Jul 01; 120(3-4):306-12. PubMed ID: 26008577
    [Abstract] [Full Text] [Related]

  • 25. Incidence and types of clinical mastitis in dairy herds with high and low somatic cell counts.
    Erskine RJ, Eberhart RJ, Hutchinson LJ, Spencer SB, Campbell MA.
    J Am Vet Med Assoc; 1988 Mar 15; 192(6):761-5. PubMed ID: 3281923
    [Abstract] [Full Text] [Related]

  • 26. Effect of carryover and presampling procedures on the results of real-time PCR used for diagnosis of bovine intramammary infections with Streptococcus agalactiae at routine milk recordings.
    Mahmmod YS, Mweu MM, Nielsen SS, Katholm J, Klaas IC.
    Prev Vet Med; 2014 Mar 01; 113(4):512-21. PubMed ID: 24467998
    [Abstract] [Full Text] [Related]

  • 27. The effect of udder infection on the bacterial flora of the bulk milk of ten dairy herds.
    Bramley AJ, McKinnon CH, Staker RT, Simpkin DL.
    J Appl Bacteriol; 1984 Oct 01; 57(2):317-23. PubMed ID: 6389466
    [Abstract] [Full Text] [Related]

  • 28. Staphylococcus aureus and Streptococcus dysgalactiae in Norwegian herds after introduction of selective dry cow therapy and teat dipping.
    Whist AC, Osterås O, Sølverød L.
    J Dairy Res; 2007 Feb 01; 74(1):1-8. PubMed ID: 16978433
    [Abstract] [Full Text] [Related]

  • 29. The importance of hygienic procedures in controlling mastitis.
    Bushnell RB.
    Vet Clin North Am Large Anim Pract; 1984 Jul 01; 6(2):361-70. PubMed ID: 6474758
    [Abstract] [Full Text] [Related]

  • 30. Antimicrobial resistance of mastitis pathogens.
    Oliver SP, Murinda SE.
    Vet Clin North Am Food Anim Pract; 2012 Jul 01; 28(2):165-85. PubMed ID: 22664201
    [Abstract] [Full Text] [Related]

  • 31. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia.
    Abebe R, Hatiya H, Abera M, Megersa B, Asmare K.
    BMC Vet Res; 2016 Dec 03; 12(1):270. PubMed ID: 27912754
    [Abstract] [Full Text] [Related]

  • 32. Vaccination against Staphylococcus aureus mastitis in two Swedish dairy herds.
    Landin H, Mörk MJ, Larsson M, Waller KP.
    Acta Vet Scand; 2015 Nov 25; 57():81. PubMed ID: 26608421
    [Abstract] [Full Text] [Related]

  • 33. Circulation of Streptococcus agalactiae ST103 in a Free Stall Italian Dairy Farm.
    Barsi F, Carra E, Ricchi M, Gnali G, Pisoni G, Russo S, Filippi A, Arrigoni N, Zadoks RN, Garbarino C.
    Appl Environ Microbiol; 2022 Jun 14; 88(11):e0038322. PubMed ID: 35536052
    [Abstract] [Full Text] [Related]

  • 34. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms.
    Saini V, McClure JT, Scholl DT, DeVries TJ, Barkema HW.
    J Dairy Sci; 2012 Apr 14; 95(4):1921-9. PubMed ID: 22459839
    [Abstract] [Full Text] [Related]

  • 35. Effects of an automatic postmilking teat dipping system on new intramammary infections and iodine in milk.
    Galton DM.
    J Dairy Sci; 2004 Jan 14; 87(1):225-31. PubMed ID: 14765830
    [Abstract] [Full Text] [Related]

  • 36. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli.
    Taponen S, Liski E, Heikkilä AM, Pyörälä S.
    J Dairy Sci; 2017 Jan 14; 100(1):493-503. PubMed ID: 28341052
    [Abstract] [Full Text] [Related]

  • 37. Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex aetiology.
    Keane OM, Budd KE, Flynn J, McCoy F.
    Vet Rec; 2013 Jul 06; 173(1):17. PubMed ID: 23694921
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Diagnosing intramammary infections: comparison of multiple versus single quarter milk samples for the identification of intramammary infections in lactating dairy cows.
    Dohoo I, Andersen S, Dingwell R, Hand K, Kelton D, Leslie K, Schukken Y, Godden S.
    J Dairy Sci; 2011 Nov 06; 94(11):5515-22. PubMed ID: 22032374
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 35.